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Ever since the emergence of three-
dimensional computer graphics 

in the early 1960s, graphics specialists 
have dreamed of creating photoreal-
istic virtual worlds indistinguishable 
from the real world. Product designers, 
architects, lighting planners, gamers 
and scientific visualization pioneers 
have craved real-time reality on a chip; 
hardware designers and algorithm 
writers have made spectacular prog-
ress, as one can see by looking over 
the shoulder of teenagers playing the 
latest games (facing page). But as we 
will see, the computational challenges 
that remain are immense. Implacable 
evolutionary progress has been made 
by software engineers in devising in-
genious algorithms, and generations of 
hardware have been invented to traffic 
and execute the calculations, yet the 
sheer scale of the computational task 
keeps the goal of real-time photoreal-
ism at some distance over the hori-
zon. Most office computers consume 
a small sliver above zero percent of 
their available computational cycles 
for routine work; the billions of calcu-
lations per second that are available 
on a modern multi-processor desktop 
computer are simply not required to 
process spreadsheets. Compare that 
to the overwhelming task of the most 

advanced 3D applications, churning 
through the calculations required to 
produce a scene using the latest algo-
rithms, including the tracking of bil-
lions of simulated photons through 
a scene, and even the tracking of the 
simulated light penetrating the scene’s 
surfaces to achieve the perfectly con-
vincing photorealistic image. 

Such renderings can take today’s 
fast machines hours to produce a sin-
gle frame. 

Elite gamers clamor for no less than 
60 frames per second. Why so many? 
Because the pursuit of real-time graph-
ics is driven by the desire for not just 
visual accuracy but also interactivity. 
Real-time scenes are created to be in-
teracted with. The television standard 
of 29.97 frames per second is comfort-
ably convincing for passive viewers; 
real-time applications, such as gam-
ing and military cockpit simulations, 
must operate at the speed of human 
reflexes. 

As participants in the enterprise of 
creating photorealistic graphics (one 
of us having a research emphasis on 
greater speed, the other on greater 
realism), we’ll review the kinds of 
computations required, the schemes 
that have been invented to moderate 
the heavy computational chores, and 
the parallel world of hardware devel-
opment to support the calculations. 
The hardware and software of pho-
torealistic graphics have coevolved 
for several decades. The economics 
of hardware development, driven 
mainly by gamers’ unquenchable lust 
for speed, has resulted in affordable 
graphics cards of awesome power. 
Computations have been moved from 
the central processing unit (CPU) of 
computers to the specialized graphics 
processing units (GPU) of consumer 
video cards. The leap in computation-
al prowess then drives the develop-

ment of greedier algorithms for more 
convincing realism. This cycle has 
gone on for decades, blossoming into 
multi-billion-dollar video card and 
game software industries. 

Making the Scene
Current real-time graphics applica-
tions, such as games, represent the 
complexity of virtual environments by 
converting scene descriptions into mil-
lions of geometric primitives—points, 
lines, and polygons, usually triangles, 
connected to form polygonal surfaces. 
Early games represented 3D scenes us-
ing a few hundred triangles; in histori-
cal context, the experience of interact-
ing with these 3D environments could 
be quite compelling, but the appeal 
had little to do with realism. 

More triangles made for more con-
vincing scenes. An obvious first step 
in accelerating the rendering of a scene 
was to optimize the number of tri-
angles required. Scene designers are 
obliged to make judicious decisions 
about the balance between polygon 
count and realism. How much detail 
is enough? Current GPU hardware can 
process scenes composed of several 
million triangles while still reaching 
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Figure 1. Consumer demand combined with algorithmic artistry and muscled-up hardware have driven computer graphics far toward 
the long-imagined goal of photorealistic animation. The state-of-the-art animated feature movie Ratatouille, released by Pixar Anima-
tion Studios in 2007, was produced by an arsenal of about 850 computers hosting nearly 3,200 processors. The average rendering time 
for each frame of animation was about 23,000 seconds per frame. Today’s video gamers want the same visual quality—at 60 frames per 
second. And they are on the road to getting it, as can be seen in the Electronic Arts 2008 action and adventure game Mirror’s Edge, which 
delivers dazzling interactive play at more than 60 frames per second on personal computers. (The image above from that game was ren-
dered offline with additional resolution to achieve print quality.) The authors review the roadmap to a future in which advances in 
speed and photorealism finally achieve the goal of perfectly convincing interactive computer graphics in real time. (Image courtesy of 
EA Digital Illusions Creative Entertainment.)
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the gamer’s benchmark of 60 frames 
per second. If current trends continue, 
we can expect hardware in the near 
future that handles hundreds of mil-
lions or even billions of triangles with 
sufficient speed. The question is: how 
many triangles are required to achieve 
a photorealistic rendering of a given 
scene? One of the founders of Pixar 
Animation Studios, maker of 3D block-
busters from Toy Story to Ratatouille, 
concluded that 80 million triangles 
would be required. It seems that the 
hardware will soon be up to the job 
of handling the geometry in real time. 
However, there is much more to pho-
torealism than polygon count. 

Faster with Rasterization
With contemporary hardware and soft-
ware, the fastest way to render a scene 
(convert the 3D data to a visual image) 
is rasterization, the technique used by 
today’s computer games. An algorithm 
processes the scene detecting what ge-
ometry is visible and what is screened 
from view (including the back faces of 
3D objects facing the viewer). Nonvis-
ible geometry is discarded to speed the 
calculation, and then the scanner deter-
mines which vertices are closest to the 
viewer. Triangles formed by vertices are 
painted onto a virtual screen, as shown 
in Figure 3. The color of each pixel on 
the screen is determined by the color 
and surface properties assigned to the 
triangle, as well as the lighting in the 
scene. The angles where triangles abut 
are made to vanish in the image by the 
neat trick of averaging the color values 
of adjacent triangles. Color and surface 
properties (ruggedness, sheen, and so 

on) are assigned by software instruc-
tions called shaders. Most commonly, 
the surface information is assigned 
using texture maps, which are digital 
images “glued” onto the 3D object. 
Texture mapping is an art in itself. In 
the production pipeline of 3D studios, 
artists specialize in the creation of tex-
ture maps to convey, for example, not 
just the color of an orange, but also the 
knobbly surface and the waxy shine. 
An early breakthrough on the road to 
photorealism was bump mapping, con-
ceived by the computer graphics pio-
neer James F. Blinn. (It was said of him 
quite a few years ago, by the graphics 
hardware innovator Ivan Sutherland, 
that “there have been about a dozen 
great computer graphics people and 
Jim Blinn is six of them.” Blinn has 

made many milestone contributions in 
the field of deriving convincing images 
from 3D data.) Bump maps convey de-
tails of microfine surface structure with-
out adding to the overall geometry load 
by telling the renderer to handle local 
lighting as if the surface were bumpy, 
with the bumps defined by light and 
dark areas on the texture map. 

Let There Be Lighting. And Shadows.
The critical element of lighting in a 3D 
environment comes from virtual light 
sources placed in the scene. In raster-
ization schemes, a few simple equa-
tions are used to compute how much 
light emanating from a light source ar-
rives at a given point on each triangle, 
and how much of this light is reflected 
towards the observer. 

The earliest 3D renderings had a sig-
nature, otherworldly look because they 
lacked shadows, a critical aspect of vi-
sual realism. Rendering shadows with 
rasterization is straightforward using 
a technique that employs multiple ren-
dering passes. For example, one can use 
a shadow-mapping algorithm, where 
the scene is rendered from the light 
source into a shadow map in a first pass. 
The shadow map contains information 
about all the triangles visible from the 
point of view of a particular light. In a 
second pass, from the “camera” point 
of view, which is different from the light 
source, the color calculation for each tri-
angle queries the shadow map to see 
if the triangle is visible from the light 
source or is in shadow. Adjustments are 
then made to the color of the triangle to 
account for the shadow.

Figure 3. Rasterization algorithms render scenes by projecting rays to the vertices of geom-
etry in the scene, thus defining polygons that are then mapped on pixels. Surface properties 
assigned to the polygons of the model are then computed and mapped to the pixel screen to 
create an image.

Figure 2. Optimization and approximation are keys to graphics rendering speed. Algorithms 
optimize how many calculations must be made, and scene elements such as shadows, reflec-
tions and even geometry may be approximated, with accuracy surrendered for speed. Above, the 
polygon count of a 3D model is progressively reduced. For a rendering scheme such as rasteriza-
tion, which renders individual polygons, the middle models would render much faster than the 
one on the left. As the distance from the viewer to the cat increases, fewer and fewer polygons 
can be used with little loss in quality. (Adapted from Daniels, J., C. T. Silva, J. Shepherd and 
E. Cohen. 2008. “Quadrilateral mesh simplification.” Proceedings of SIGGRAPH Asia 27(5):1–9.)
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A decided weakness of rasterization 
is the rendering of reflections and re-
fractions. Refractions in the real world 
can be seen as the bending of light when 
it passes through a transparent medium 
such as a glass of water. Like shadows, 
they contribute greatly to realism. For 
a variety of reasons, reflections and 
refractions cannot be computed using 
the triangle-painting technique that is 
the core strategy of rasterization. Work-
arounds have been devised to create 
illusions of reflection and refraction, but 
the basic problem these lighting effects 
present has proved intractable for ras-
terization schemes. 

There are other lighting effects that 
rasterization fails to capture. In real 
scenes, color bleeding occurs when dif-
fuse surfaces are illuminated by indi-
rect lighting. For example, in a white 
room with a red carpet, the carpet 
casts a subtle red glow onto the white 
walls. Another elusive phenomenon 
is caustics; when real light is refract-
ed or reflected through a transparent 
medium, focusing effects can produce 
blooms of intense brightness. An ex-
ample of caustics is the shimmering 
waves of brightness seen on the bot-
tom of a swimming pool. Subsurface 
scattering is a particularly notable 
recent development on the road to 
photorealism that is confounded by 
the limitations of rasterization. Real 
materials often have a degree of trans-
lucency on their surface. Think of how 
light penetrates jade. As light crosses 

the material’s surface, it is scattered, 
some inward, some back out. The dis-
tinctive visual quality of subsurface 
scattering accounts for the appear-
ance of, among many other things, 
human skin, and the difficulty of ac-
curately reproducing it accounts for 
the notoriously unconvincing appear-
ance of many 3D renderings of faces. 
At present, rasterization is the main 
player in real-time graphics, but in 
the opinion of many, for reasons that 
include its limitations at handling ad-
vanced lighting effects like those just 
mentioned, it will not be the road to 
real-time photorealism.

Racier Hardware
Hardware is part of the answer. Better 
graphics is the main reason why aver-
age consumers want faster computers, 
and one of the key technologies driv-
ing real-time graphics is the use of spe-
cialized graphics processing units that 
can process and display vast amounts 
of geometry rapidly. GPUs achieve 
their performance by using a high de-
gree of parallel processing, in which 
the task of rendering a scene is divided 

Figure 5. Visual subtleties can be costly in terms of calculation yet necessary for realism. Light hitting a surface such as skin penetrates and scat-
ters, illuminating the surface from within. Subsurface scattering is an algorithm that captures that effect by propagating light rays and tracking 
their effects, based on material properties assigned to the 3D object. Renaissance painters, such as Vermeer in his Portrait of a Young Woman, met 
the realism challenge with the analogous technique of glazing, applying layers of translucent pigments to capture and scatter light.  

Figure 4. Bump mapping is an extremely effi-
cient scheme for conjuring fine surface detail 
at render time. A texture map assigned to a 
3D model gives shading instructions to the 
renderer in the form of light and dark regions, 
which indicate whether regions should cast 
shadows as if they were slightly raised or low-
ered from the actual surface of the geometry. 
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into smaller tasks that can be processed 
in parallel by specialized computing 
units within the GPU. Graphics can be 
seen as a black hole of computational 
power—the more power you throw at 
the problem, the more consumers and 
developers demand in order to render 
ever more complex images. Hardware 
architectures, both CPUs and GPUs, 
are being designed with these market 
forces in mind. 

A recent development in GPU tech-
nology is programmability. Ten years 
ago, GPUs were essentially fixed- 
function units with some tweakable 
parameters to accommodate a few dif-
ferent types of calculations. The rigid-
ity of GPUs greatly limited the types of 
graphic effects that could be rendered. 
With the newfound flexibility of pro-
grammable GPUs, a programmer can 
specify advanced lighting models cho-
sen to maximize the potential of the 
hardware. Programmable hardware 
has also opened the door to conjuring 
tricks that overcome the inherent limi-
tations of the rasterization approach. 
For example, researchers and game 
developers around the world, in pur-
suit of ever more realistic game sce-
narios, have developed approximative 
multi-pass algorithms that can imitate 
color bleeding, caustics, and subsur-
face scattering using rasterization on 
GPUs. However, this development is 
starting to hit a wall. The results may 
be attractive, even entrancing, but by 
the standards of photorealism they are 
not convincing. Achieving true pho-
torealism will require a fundamental 
change in the way real-time graphics 
deals with geometry and lighting. 

Realism with Ray Tracing
Whoever solves the riddle of moving 
beyond rasterization will likely hold the 
key to the future of real-time graphics. 
A race is on to develop new hardware 
capable of supporting new algorithms 
that can simulate the lighting effects 
that rasterization cannot handle. One of 
these algorithms is ray tracing. 

Conceptually, ray tracing and ras-
terization are not that different: Both 
solve for visibility along a ray. Ray 
tracing differs in simulating individ-
ual light rays that shoot through a 3D 
environment, including the simulated 
propagation of new rays when light 
bounces off scene geometry—multiple 
new rays, in fact, if the light bounces 
off diffusely, reflectively, refractively, 
or in combination as real light gener-

ally does. By tracing individual light 
rays back to a light source, it is pos-
sible to account in a reasonably natural 
way for the actual physics of light, not 
just reflection and refraction but also 
specialized effects like color bleeding 
and caustics. 

Ray tracing is an elegant algorithm, 
quite simple to specify in code—Paul 
Heckbert, now a 3D graphics archi-
tect at the video card vendor NVIDIA, 
coded instructions for a functional 
ray tracer that can be printed, just leg-
ibly, on a business card. (The feat was 
stimulated by a contest in which, it is 
gleefully reported, “repulsive C code 
tricks” were unveiled.) The natural 
way in which ray tracing deals with 
lighting makes it an obvious candidate 
to replace rasterization, but a simple 
algorithm does not necessarily cor-
relate with rapid production of a fin-
ished image. The speed of rasterization 
derives from capturing the visible fea-
tures of a triangle, then forgetting the 
triangle as it moves on to the next one. 
Ray tracing must take account of an 
entire scene in which light rays bounce 

around. In ray-tracing algorithms, it is 
necessary to process all of the triangles 
in the scene and then convert the data 
into an acceleration structure, a configu-
ration of the data that optimizes the 
ability to determine if a given light ray 
hits a triangle. Different lighting effects 
may benefit from different acceleration 
structures. At every step in graphics 
rendering, researchers are exploring 
ways to optimize the calculations. 

 Ray tracing is unavoidably a highly 
computation-intensive algorithm. Be-
cause it tracks the path of every individ-
ual ray of light that illuminates a scene, 
it may be necessary to trace several 
million rays for a single image. If more 
advanced effects are incorporated, the 
number of rays can multiply substan-
tially. The benefit that seduces research-
ers is the beauty of the images that re-
sult. For example, the imperfect lighting 
of lesser schemes can be replaced by the 
breathtaking realism of global illumina-
tion, in which environments are lit, as in 
reality, not by one or a few light sources, 
but by all the surfaces that reflect diffuse 
light back into the scene. 

Figure 6. In ray tracing, a ray is shot through each pixel of a virtual screen. Intersection test-
ing between the ray and the geometric primitives in the scene solves for whether the ray hits 
geometry. An important advantage of ray tracing over rasterization is the ability to represent 
reflection and refraction, which is done by propagating rays from the points of intersection 
and tracking their journey through the rest of the 3D scene. In a highly detailed scene, mil-
lions of individual rays may be required. 
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Given the speed advantages of near-
ly-good-enough rasterization and the 
computational challenges of better-
than-good-enough ray tracing, the next 
generation GPUs are likely to support 
both algorithms. The current market for 
GPUs is thoroughly dominated by three 
vendors, Intel, NVIDIA and AMD/ATI, 
which in 2008 represented 97.8 percent 
of market share. These companies are 
known to be betting on an evolutionary 
approach to existing architectures, in 
which increased programmability will 
allow ray tracing to be implemented 
as a complement to rasterization. The 
world’s largest chipmaker, Intel, em-
barked on the development of a com-
pletely new architecture codenamed 
Larrabee, a “many-core compute en-
gine” based on Intel’s highly success-
ful x86 CPU architecture, the proces-
sor family used in both PC and Mac 
computers. The Larrabee architecture 
has been called a general-purpose GPU, 
indicative of the blurring boundary be-
tween GPUs and CPUs. While support-
ing traditional GPU functions like ras-
terized graphics, hybrid CPU features 

of the Larrabee can be used to carry out 
tasks such as ray tracing and advanced 
physics calculations. (A pleasing side 
effect of the thriving consumer market, 
in which competition for the millions 
of graphics cards purchased each year 
drives down prices, is the availability 
of inexpensive, high-performance com-
puting power for other purposes, such 
as scientific computing.) In December 
2009, Intel announced that the first 
graphics product based on the Larra-
bee architecture will not be a consumer 
product as originally planned. Instead, 
the hardware will be released as a soft-
ware development platform that will 
be used by Intel and others to explore 
the potential of many-core applications. 
This is a familiar stage in the develop-
ment of computer graphics over the 
years, as consumer desires drive the de-
velopment of more muscular hardware, 
and hardware developments drive the 
advance of software applications like 
real-time ray tracing that come into 
reach on the new architectures. 

The progression from fixed-function 
to highly programmable GPUs, and 

now to architectures with minimal fixed-
function hardware, is a sign of the wheel 
of reincarnation, in which functionality is 
transferred from the CPU to special-pur-
pose hardware for performance reasons, 
followed by power-craving expansion of 
the subsidiary unit. The process was first 
described and named by Todd Myer and 
Ivan Sutherland as early as 1968:

We approached the task [of creat-
ing a graphics processor] by start-
ing with a simple scheme and 
adding commands and features 
that we felt would enhance the 
power of the machine. Gradually 
the processor became more com-
plex. We were not disturbed by 
this because computer graphics, 
after all, are complex. Finally the 
display processor came to resem-
ble a full-fledged computer . . .

To escape the wheel of reincarnation, 
Myer and Sutherland suggested that if 
an architecture needs more computa-
tional power, it should be added to the 
core of the system, rather than spur-
ring the creation of special-purpose 

Figure 7. Many rendering effects depend on multipass rendering, with information from each pass combined in a final image. The top left 
image gives a striking view of depths in the scene using a specialized algorithm to capture shadow information. Upper right shows diffuse 
color without shadows. The two images are combined at bottom left, and at bottom right additional lighting information such as specularity 
(shininess) dramatically improves the realism of the image. (Images courtesy of Crytek GmbH.) 
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hardware units. We may be seeing that 
in the emergence of multiple proces-
sors, multiple cores within processors, 
and enabling architectures that increas-
ingly support parallel processing.  

When?
Current graphics hardware is capable 
of processing several tens of millions of 
rays per second. Although this sounds 
impressive, it is still far from the re-
quired number of rays for a modern 
game setup. Modern games rendering 
at 60 frames per second in high-defi-
nition resolution, 1920 x 1080 pixels, 
with, let us say, 16 rays per pixel for 
all lighting effects, require 60 x 1920 x 
1080 x 16 = 2 billion rays per second, 
which is approximately two orders of 
magnitude more than current hard-
ware can deliver. One obvious strategy 
to overcome this challenge is to in-
crease the capability of the hardware. 
A great advantage of ray tracing is that 
it is a highly parallel algorithm—it has 
been called “embarrassingly parallel.” 
Each ray can be traced independently. 
This is significant since it allows ray 
tracing to exploit the parallel nature of 
GPUs; if 100 processors in parallel can-
not complete the job quickly enough, 
perhaps 1,000 can.

NVIDIA, AMD/ATI and Intel are 
all betting on parallel computing. The 
latest GPUs contain hundreds of indi-
vidual compute units, each capable of 
tracing individual rays. Intel’s Larra-
bee architecture uses a hybrid strategy 

in which multiple x86-derived proces-
sors use specialized vector processing 
to trace batches of rays simultaneously. 
This approach is quite challenging to 
program and it is still unknown if ray 
tracing can utilize the hardware to its 
full potential, but promising work has 
been done on current CPUs. Yet the 
challenge is not to be underestimated. 
Moore’s law, which has predicted the 
progress in computer power over the 
past 40 years, says that transistor den-
sity will double every two years. Due 
to performance increases in transis-
tors, this can be translated to a dou-
bling in computer performance every 
18 months. If Moore’s law holds, then, 
it will take roughly 10 years before 
consumer machines are capable of 
tracing the few billion rays required 
to render the game setups that are cur-
rently available. And in 10 years, the 
requirements for games and real-time 
graphics in general might be different, 
perhaps calling for higher resolutions 
or yet-to-be-thought-of algorithms.

Hybrid Future
Skeptics may claim, with some justifi-
cation, that real-time ray tracing is a 
pipe dream that will never be realized; 
the hardware will always be too slow. 
Even if the hardware becomes fast 
enough to handle 16 rays per pixel in 
a full-resolution scene, that may not be 
enough to achieve all the lighting effects 
that photorealistic ray tracing may call 
for. With this in mind there is a growing 

train of thought that the future may be 
a hybrid approach that combines both 
rasterization and ray tracing. 

Combining rasterization and ray 
tracing is an old idea in computer 
graphics. The basic approach uses ras-
terization to decide which triangles can 
be seen on the screen and then uses ray 
tracing to perform the shading calcula-
tions. This method can be used with 
current GPU hardware, employing ray 
tracing selectively to add reflections 
and refractions in strategic places. 
There is little doubt that future genera-
tions of real-time graphics for games 
will use this approach for as long as 
the pure ray-tracing approach is unat-
tainable on available hardware. 

Pixar uses a hybrid rendering tech-
nique to create its movies based on the 
Reyes algorithm, an advanced form of 
rasterization. (Reyes is an acronym for 
“renders everything you ever saw.”) 
Reyes generates micropolygons—scene 
geometry is tessellated at render time 
into pixel-sized triangles or quadrilat-
erals. The use of micropolygons makes 
it possible to create complex geomet-
ric effects through the use of displace-
ment mapping—similar to the bump 
mapping described earlier except that 
it actually displaces the geometry, on 
a tiny scale, rather than just giving the 
appearance of displacement. This is a 
powerful way of creating details such 
as the pores on human skin, although 
it can generate significantly more 
complex geometry than current ray-
tracing algorithms can deal with. Mi-
cropolygon rendering can be practical 
on GPUs, and if future games were to 
use micropolygon rendering, the visual 
quality of a game could be similar to 
that of the movie Toy Story. However, 
micropolygon rendering fails at sim-
ulating the same lighting effects that 
limit rasterization. Pixar’s response has 
been to use ray tracing coupled with 
micropolygon rendering in a hybrid 
setup. But when making its movies, 
Pixar doesn’t have to worry about how 
long it takes to render a frame.

There is another alternative to ray 
tracing—trick the human observer. 
Perhaps it is not necessary to have 
fully accurate lighting and reflections 
in the next generation of games. This is 
the approach that current games use. 
The real-time graphics community has 
developed many tricks that deliver 
great-looking graphic images in real 
time. For example, NVIDIA has shown 
a demo of human skin rendered with 

Figure 8. Computer graphics researchers probe reality for the delicate effects that make or 
break the realism of an image. Caustics appear when light that is reflected (left) or refracted 
(right) accumulates or cancels, generating exotic shapes and hues that the observer may not 
recognize, but expects. (Photograph courtesy of Tomas Akenine-Möller.)
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subsurface scattering running in real 
time on a GPU. Clever filtering tech-
niques generated rendered images that 
looked very convincing; few people 
could see the difference between their 
result and a ray-traced image. How-
ever, an approach based on tricks has 
limitations. Each trick is usually highly 
specialized and often does not mix 
well with other tricks. For example, 
it would likely require acrobatic cod-
ing to simulate indirect lighting on a 
human face with simulated subsur-
face scattering. This ultimately is what 
makes ray tracing attractive. It scales 
very well with the addition of process-
ing power, and it is trivial to account 
for advanced lighting effects by simply 
tracing more rays.

The annual SIGGRAPH confer-
ence (Special Interest Group, Graph-
ics) is the premier venue for computer 
graphics research. At the August 2009 
SIGGRAPH, the crowd-pleasing Com-
puter Animation Festival component 
of the program presented the debut of 
a new session, Real-Time Rendering, 

in which developers demonstrated 
their most advanced real-time games 
and other applications alongside the 
ground-breaking prerendered works 
that are the staple of the conference. 
NVIDIA and Intel both demonstrated 
real-time ray tracing on their hardware. 
Intel, using their current-generation 
CPU architecture, code-named Ne-
halem and released in late 2008, dem-
onstrated a ray-traced game scenario 
running at approximately 15 frames 
per second, featuring a sea bottom vis-
ible through the shimmering surface of 
a lagoon. Progress is being made. 

Some years ago, veteran game de-
veloper Billy Zelsnack said, with hope-
ful irony, “Pretty soon, computers will 
be fast.” Those words remain as true 
today as the day they were spoken. We 
add this, with less ambiguity: “Pretty 
soon, photorealism will be real-time.”
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For relevant Web links, consult this 
 issue of American Scientist Online:

http://www.americanscientist.org/
issues/id.83/past.aspx

                                                                


