
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions,
American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to perms@amsci.org.
©Sigma Xi, The Scientific Research Society and other rightsholders

132 American Scientist, Volume 98 © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Ever since the emergence of three-
dimensional computer graphics

in the early 1960s, graphics specialists
have dreamed of creating photoreal-
istic virtual worlds indistinguishable
from the real world. Product designers,
architects, lighting planners, gamers
and scientific visualization pioneers
have craved real-time reality on a chip;
hardware designers and algorithm
writers have made spectacular prog-
ress, as one can see by looking over
the shoulder of teenagers playing the
latest games (facing page). But as we
will see, the computational challenges
that remain are immense. Implacable
evolutionary progress has been made
by software engineers in devising in-
genious algorithms, and generations of
hardware have been invented to traffic
and execute the calculations, yet the
sheer scale of the computational task
keeps the goal of real-time photoreal-
ism at some distance over the hori-
zon. Most office computers consume
a small sliver above zero percent of
their available computational cycles
for routine work; the billions of calcu-
lations per second that are available
on a modern multi-processor desktop
computer are simply not required to
process spreadsheets. Compare that
to the overwhelming task of the most

advanced 3D applications, churning
through the calculations required to
produce a scene using the latest algo-
rithms, including the tracking of bil-
lions of simulated photons through
a scene, and even the tracking of the
simulated light penetrating the scene’s
surfaces to achieve the perfectly con-
vincing photorealistic image.

Such renderings can take today’s
fast machines hours to produce a sin-
gle frame.

Elite gamers clamor for no less than
60 frames per second. Why so many?
Because the pursuit of real-time graph-
ics is driven by the desire for not just
visual accuracy but also interactivity.
Real-time scenes are created to be in-
teracted with. The television standard
of 29.97 frames per second is comfort-
ably convincing for passive viewers;
real-time applications, such as gam-
ing and military cockpit simulations,
must operate at the speed of human
reflexes.

As participants in the enterprise of
creating photorealistic graphics (one
of us having a research emphasis on
greater speed, the other on greater
realism), we’ll review the kinds of
computations required, the schemes
that have been invented to moderate
the heavy computational chores, and
the parallel world of hardware devel-
opment to support the calculations.
The hardware and software of pho-
torealistic graphics have coevolved
for several decades. The economics
of hardware development, driven
mainly by gamers’ unquenchable lust
for speed, has resulted in affordable
graphics cards of awesome power.
Computations have been moved from
the central processing unit (CPU) of
computers to the specialized graphics
processing units (GPU) of consumer
video cards. The leap in computation-
al prowess then drives the develop-

ment of greedier algorithms for more
convincing realism. This cycle has
gone on for decades, blossoming into
multi-billion-dollar video card and
game software industries.

Making the Scene
Current real-time graphics applica-
tions, such as games, represent the
complexity of virtual environments by
converting scene descriptions into mil-
lions of geometric primitives—points,
lines, and polygons, usually triangles,
connected to form polygonal surfaces.
Early games represented 3D scenes us-
ing a few hundred triangles; in histori-
cal context, the experience of interact-
ing with these 3D environments could
be quite compelling, but the appeal
had little to do with realism.

More triangles made for more con-
vincing scenes. An obvious first step
in accelerating the rendering of a scene
was to optimize the number of tri-
angles required. Scene designers are
obliged to make judicious decisions
about the balance between polygon
count and realism. How much detail
is enough? Current GPU hardware can
process scenes composed of several
million triangles while still reaching

The Race for Real-time Photorealism

The coevolution of algorithms and hardware is bringing us closer to interactive
computer graphics indistinguishable from reality

Henrik Wann Jensen and Tomas Akenine-Möller

Henrik Wann Jensen is an associate professor
at the University of California, San Diego,
where he specializes in realistic image synthe-
sis and the rendering of natural phenomena.
He received his Ph.D. in computer science at
the Technical University of Denmark. Tomas
Akenine-Möller is a professor of computer sci-
ence at Lund University who works part-time
with Intel, specializing in computer graphics
and image processing. He received his Ph.D.
in computer graphics at Chalmers University
of Technology. Address for Jensen: Computer
Science and Engineering, 4116, University of
California, San Diego, CA 92093-0404. Email:
henrik@graphics.ucsd.edu

3D graphics circa 1981: 3D Monster Maze on
the Sinclair ZX81 with 16-kilobyte memory
expansion.

2010 March–April 133www.americanscientist.org © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Figure 1. Consumer demand combined with algorithmic artistry and muscled-up hardware have driven computer graphics far toward
the long-imagined goal of photorealistic animation. The state-of-the-art animated feature movie Ratatouille, released by Pixar Anima-
tion Studios in 2007, was produced by an arsenal of about 850 computers hosting nearly 3,200 processors. The average rendering time
for each frame of animation was about 23,000 seconds per frame. Today’s video gamers want the same visual quality—at 60 frames per
second. And they are on the road to getting it, as can be seen in the Electronic Arts 2008 action and adventure game Mirror’s Edge, which
delivers dazzling interactive play at more than 60 frames per second on personal computers. (The image above from that game was ren-
dered offline with additional resolution to achieve print quality.) The authors review the roadmap to a future in which advances in
speed and photorealism finally achieve the goal of perfectly convincing interactive computer graphics in real time. (Image courtesy of
EA Digital Illusions Creative Entertainment.)

134 American Scientist, Volume 98 © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

the gamer’s benchmark of 60 frames
per second. If current trends continue,
we can expect hardware in the near
future that handles hundreds of mil-
lions or even billions of triangles with
sufficient speed. The question is: how
many triangles are required to achieve
a photorealistic rendering of a given
scene? One of the founders of Pixar
Animation Studios, maker of 3D block-
busters from Toy Story to Ratatouille,
concluded that 80 million triangles
would be required. It seems that the
hardware will soon be up to the job
of handling the geometry in real time.
However, there is much more to pho-
torealism than polygon count.

Faster with Rasterization
With contemporary hardware and soft-
ware, the fastest way to render a scene
(convert the 3D data to a visual image)
is rasterization, the technique used by
today’s computer games. An algorithm
processes the scene detecting what ge-
ometry is visible and what is screened
from view (including the back faces of
3D objects facing the viewer). Nonvis-
ible geometry is discarded to speed the
calculation, and then the scanner deter-
mines which vertices are closest to the
viewer. Triangles formed by vertices are
painted onto a virtual screen, as shown
in Figure 3. The color of each pixel on
the screen is determined by the color
and surface properties assigned to the
triangle, as well as the lighting in the
scene. The angles where triangles abut
are made to vanish in the image by the
neat trick of averaging the color values
of adjacent triangles. Color and surface
properties (ruggedness, sheen, and so

on) are assigned by software instruc-
tions called shaders. Most commonly,
the surface information is assigned
using texture maps, which are digital
images “glued” onto the 3D object.
Texture mapping is an art in itself. In
the production pipeline of 3D studios,
artists specialize in the creation of tex-
ture maps to convey, for example, not
just the color of an orange, but also the
knobbly surface and the waxy shine.
An early breakthrough on the road to
photorealism was bump mapping, con-
ceived by the computer graphics pio-
neer James F. Blinn. (It was said of him
quite a few years ago, by the graphics
hardware innovator Ivan Sutherland,
that “there have been about a dozen
great computer graphics people and
Jim Blinn is six of them.” Blinn has

made many milestone contributions in
the field of deriving convincing images
from 3D data.) Bump maps convey de-
tails of microfine surface structure with-
out adding to the overall geometry load
by telling the renderer to handle local
lighting as if the surface were bumpy,
with the bumps defined by light and
dark areas on the texture map.

Let There Be Lighting. And Shadows.
The critical element of lighting in a 3D
environment comes from virtual light
sources placed in the scene. In raster-
ization schemes, a few simple equa-
tions are used to compute how much
light emanating from a light source ar-
rives at a given point on each triangle,
and how much of this light is reflected
towards the observer.

The earliest 3D renderings had a sig-
nature, otherworldly look because they
lacked shadows, a critical aspect of vi-
sual realism. Rendering shadows with
rasterization is straightforward using
a technique that employs multiple ren-
dering passes. For example, one can use
a shadow-mapping algorithm, where
the scene is rendered from the light
source into a shadow map in a first pass.
The shadow map contains information
about all the triangles visible from the
point of view of a particular light. In a
second pass, from the “camera” point
of view, which is different from the light
source, the color calculation for each tri-
angle queries the shadow map to see
if the triangle is visible from the light
source or is in shadow. Adjustments are
then made to the color of the triangle to
account for the shadow.

Figure 3. Rasterization algorithms render scenes by projecting rays to the vertices of geom-
etry in the scene, thus defining polygons that are then mapped on pixels. Surface properties
assigned to the polygons of the model are then computed and mapped to the pixel screen to
create an image.

Figure 2. Optimization and approximation are keys to graphics rendering speed. Algorithms
optimize how many calculations must be made, and scene elements such as shadows, reflec-
tions and even geometry may be approximated, with accuracy surrendered for speed. Above, the
polygon count of a 3D model is progressively reduced. For a rendering scheme such as rasteriza-
tion, which renders individual polygons, the middle models would render much faster than the
one on the left. As the distance from the viewer to the cat increases, fewer and fewer polygons
can be used with little loss in quality. (Adapted from Daniels, J., C. T. Silva, J. Shepherd and
E. Cohen. 2008. “Quadrilateral mesh simplification.” Proceedings of SIGGRAPH Asia 27(5):1–9.)

2010 March–April 135www.americanscientist.org © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

A decided weakness of rasterization
is the rendering of reflections and re-
fractions. Refractions in the real world
can be seen as the bending of light when
it passes through a transparent medium
such as a glass of water. Like shadows,
they contribute greatly to realism. For
a variety of reasons, reflections and
refractions cannot be computed using
the triangle-painting technique that is
the core strategy of rasterization. Work-
arounds have been devised to create
illusions of reflection and refraction, but
the basic problem these lighting effects
present has proved intractable for ras-
terization schemes.

There are other lighting effects that
rasterization fails to capture. In real
scenes, color bleeding occurs when dif-
fuse surfaces are illuminated by indi-
rect lighting. For example, in a white
room with a red carpet, the carpet
casts a subtle red glow onto the white
walls. Another elusive phenomenon
is caustics; when real light is refract-
ed or reflected through a transparent
medium, focusing effects can produce
blooms of intense brightness. An ex-
ample of caustics is the shimmering
waves of brightness seen on the bot-
tom of a swimming pool. Subsurface
scattering is a particularly notable
recent development on the road to
photorealism that is confounded by
the limitations of rasterization. Real
materials often have a degree of trans-
lucency on their surface. Think of how
light penetrates jade. As light crosses

the material’s surface, it is scattered,
some inward, some back out. The dis-
tinctive visual quality of subsurface
scattering accounts for the appear-
ance of, among many other things,
human skin, and the difficulty of ac-
curately reproducing it accounts for
the notoriously unconvincing appear-
ance of many 3D renderings of faces.
At present, rasterization is the main
player in real-time graphics, but in
the opinion of many, for reasons that
include its limitations at handling ad-
vanced lighting effects like those just
mentioned, it will not be the road to
real-time photorealism.

Racier Hardware
Hardware is part of the answer. Better
graphics is the main reason why aver-
age consumers want faster computers,
and one of the key technologies driv-
ing real-time graphics is the use of spe-
cialized graphics processing units that
can process and display vast amounts
of geometry rapidly. GPUs achieve
their performance by using a high de-
gree of parallel processing, in which
the task of rendering a scene is divided

Figure 5. Visual subtleties can be costly in terms of calculation yet necessary for realism. Light hitting a surface such as skin penetrates and scat-
ters, illuminating the surface from within. Subsurface scattering is an algorithm that captures that effect by propagating light rays and tracking
their effects, based on material properties assigned to the 3D object. Renaissance painters, such as Vermeer in his Portrait of a Young Woman, met
the realism challenge with the analogous technique of glazing, applying layers of translucent pigments to capture and scatter light.

Figure 4. Bump mapping is an extremely effi-
cient scheme for conjuring fine surface detail
at render time. A texture map assigned to a
3D model gives shading instructions to the
renderer in the form of light and dark regions,
which indicate whether regions should cast
shadows as if they were slightly raised or low-
ered from the actual surface of the geometry.

M
etropolitan M

useum
 of A

rt, N
ew

 York/The Bridgem
an A

rt Library Int.

136 American Scientist, Volume 98 © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

into smaller tasks that can be processed
in parallel by specialized computing
units within the GPU. Graphics can be
seen as a black hole of computational
power—the more power you throw at
the problem, the more consumers and
developers demand in order to render
ever more complex images. Hardware
architectures, both CPUs and GPUs,
are being designed with these market
forces in mind.

A recent development in GPU tech-
nology is programmability. Ten years
ago, GPUs were essentially fixed-
function units with some tweakable
parameters to accommodate a few dif-
ferent types of calculations. The rigid-
ity of GPUs greatly limited the types of
graphic effects that could be rendered.
With the newfound flexibility of pro-
grammable GPUs, a programmer can
specify advanced lighting models cho-
sen to maximize the potential of the
hardware. Programmable hardware
has also opened the door to conjuring
tricks that overcome the inherent limi-
tations of the rasterization approach.
For example, researchers and game
developers around the world, in pur-
suit of ever more realistic game sce-
narios, have developed approximative
multi-pass algorithms that can imitate
color bleeding, caustics, and subsur-
face scattering using rasterization on
GPUs. However, this development is
starting to hit a wall. The results may
be attractive, even entrancing, but by
the standards of photorealism they are
not convincing. Achieving true pho-
torealism will require a fundamental
change in the way real-time graphics
deals with geometry and lighting.

Realism with Ray Tracing
Whoever solves the riddle of moving
beyond rasterization will likely hold the
key to the future of real-time graphics.
A race is on to develop new hardware
capable of supporting new algorithms
that can simulate the lighting effects
that rasterization cannot handle. One of
these algorithms is ray tracing.

Conceptually, ray tracing and ras-
terization are not that different: Both
solve for visibility along a ray. Ray
tracing differs in simulating individ-
ual light rays that shoot through a 3D
environment, including the simulated
propagation of new rays when light
bounces off scene geometry—multiple
new rays, in fact, if the light bounces
off diffusely, reflectively, refractively,
or in combination as real light gener-

ally does. By tracing individual light
rays back to a light source, it is pos-
sible to account in a reasonably natural
way for the actual physics of light, not
just reflection and refraction but also
specialized effects like color bleeding
and caustics.

Ray tracing is an elegant algorithm,
quite simple to specify in code—Paul
Heckbert, now a 3D graphics archi-
tect at the video card vendor NVIDIA,
coded instructions for a functional
ray tracer that can be printed, just leg-
ibly, on a business card. (The feat was
stimulated by a contest in which, it is
gleefully reported, “repulsive C code
tricks” were unveiled.) The natural
way in which ray tracing deals with
lighting makes it an obvious candidate
to replace rasterization, but a simple
algorithm does not necessarily cor-
relate with rapid production of a fin-
ished image. The speed of rasterization
derives from capturing the visible fea-
tures of a triangle, then forgetting the
triangle as it moves on to the next one.
Ray tracing must take account of an
entire scene in which light rays bounce

around. In ray-tracing algorithms, it is
necessary to process all of the triangles
in the scene and then convert the data
into an acceleration structure, a configu-
ration of the data that optimizes the
ability to determine if a given light ray
hits a triangle. Different lighting effects
may benefit from different acceleration
structures. At every step in graphics
rendering, researchers are exploring
ways to optimize the calculations.

 Ray tracing is unavoidably a highly
computation-intensive algorithm. Be-
cause it tracks the path of every individ-
ual ray of light that illuminates a scene,
it may be necessary to trace several
million rays for a single image. If more
advanced effects are incorporated, the
number of rays can multiply substan-
tially. The benefit that seduces research-
ers is the beauty of the images that re-
sult. For example, the imperfect lighting
of lesser schemes can be replaced by the
breathtaking realism of global illumina-
tion, in which environments are lit, as in
reality, not by one or a few light sources,
but by all the surfaces that reflect diffuse
light back into the scene.

Figure 6. In ray tracing, a ray is shot through each pixel of a virtual screen. Intersection test-
ing between the ray and the geometric primitives in the scene solves for whether the ray hits
geometry. An important advantage of ray tracing over rasterization is the ability to represent
reflection and refraction, which is done by propagating rays from the points of intersection
and tracking their journey through the rest of the 3D scene. In a highly detailed scene, mil-
lions of individual rays may be required.

2010 March–April 137www.americanscientist.org © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Given the speed advantages of near-
ly-good-enough rasterization and the
computational challenges of better-
than-good-enough ray tracing, the next
generation GPUs are likely to support
both algorithms. The current market for
GPUs is thoroughly dominated by three
vendors, Intel, NVIDIA and AMD/ATI,
which in 2008 represented 97.8 percent
of market share. These companies are
known to be betting on an evolutionary
approach to existing architectures, in
which increased programmability will
allow ray tracing to be implemented
as a complement to rasterization. The
world’s largest chipmaker, Intel, em-
barked on the development of a com-
pletely new architecture codenamed
Larrabee, a “many-core compute en-
gine” based on Intel’s highly success-
ful x86 CPU architecture, the proces-
sor family used in both PC and Mac
computers. The Larrabee architecture
has been called a general-purpose GPU,
indicative of the blurring boundary be-
tween GPUs and CPUs. While support-
ing traditional GPU functions like ras-
terized graphics, hybrid CPU features

of the Larrabee can be used to carry out
tasks such as ray tracing and advanced
physics calculations. (A pleasing side
effect of the thriving consumer market,
in which competition for the millions
of graphics cards purchased each year
drives down prices, is the availability
of inexpensive, high-performance com-
puting power for other purposes, such
as scientific computing.) In December
2009, Intel announced that the first
graphics product based on the Larra-
bee architecture will not be a consumer
product as originally planned. Instead,
the hardware will be released as a soft-
ware development platform that will
be used by Intel and others to explore
the potential of many-core applications.
This is a familiar stage in the develop-
ment of computer graphics over the
years, as consumer desires drive the de-
velopment of more muscular hardware,
and hardware developments drive the
advance of software applications like
real-time ray tracing that come into
reach on the new architectures.

The progression from fixed-function
to highly programmable GPUs, and

now to architectures with minimal fixed-
function hardware, is a sign of the wheel
of reincarnation, in which functionality is
transferred from the CPU to special-pur-
pose hardware for performance reasons,
followed by power-craving expansion of
the subsidiary unit. The process was first
described and named by Todd Myer and
Ivan Sutherland as early as 1968:

We approached the task [of creat-
ing a graphics processor] by start-
ing with a simple scheme and
adding commands and features
that we felt would enhance the
power of the machine. Gradually
the processor became more com-
plex. We were not disturbed by
this because computer graphics,
after all, are complex. Finally the
display processor came to resem-
ble a full-fledged computer . . .

To escape the wheel of reincarnation,
Myer and Sutherland suggested that if
an architecture needs more computa-
tional power, it should be added to the
core of the system, rather than spur-
ring the creation of special-purpose

Figure 7. Many rendering effects depend on multipass rendering, with information from each pass combined in a final image. The top left
image gives a striking view of depths in the scene using a specialized algorithm to capture shadow information. Upper right shows diffuse
color without shadows. The two images are combined at bottom left, and at bottom right additional lighting information such as specularity
(shininess) dramatically improves the realism of the image. (Images courtesy of Crytek GmbH.)

138 American Scientist, Volume 98 © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

hardware units. We may be seeing that
in the emergence of multiple proces-
sors, multiple cores within processors,
and enabling architectures that increas-
ingly support parallel processing.

When?
Current graphics hardware is capable
of processing several tens of millions of
rays per second. Although this sounds
impressive, it is still far from the re-
quired number of rays for a modern
game setup. Modern games rendering
at 60 frames per second in high-defi-
nition resolution, 1920 x 1080 pixels,
with, let us say, 16 rays per pixel for
all lighting effects, require 60 x 1920 x
1080 x 16 = 2 billion rays per second,
which is approximately two orders of
magnitude more than current hard-
ware can deliver. One obvious strategy
to overcome this challenge is to in-
crease the capability of the hardware.
A great advantage of ray tracing is that
it is a highly parallel algorithm—it has
been called “embarrassingly parallel.”
Each ray can be traced independently.
This is significant since it allows ray
tracing to exploit the parallel nature of
GPUs; if 100 processors in parallel can-
not complete the job quickly enough,
perhaps 1,000 can.

NVIDIA, AMD/ATI and Intel are
all betting on parallel computing. The
latest GPUs contain hundreds of indi-
vidual compute units, each capable of
tracing individual rays. Intel’s Larra-
bee architecture uses a hybrid strategy

in which multiple x86-derived proces-
sors use specialized vector processing
to trace batches of rays simultaneously.
This approach is quite challenging to
program and it is still unknown if ray
tracing can utilize the hardware to its
full potential, but promising work has
been done on current CPUs. Yet the
challenge is not to be underestimated.
Moore’s law, which has predicted the
progress in computer power over the
past 40 years, says that transistor den-
sity will double every two years. Due
to performance increases in transis-
tors, this can be translated to a dou-
bling in computer performance every
18 months. If Moore’s law holds, then,
it will take roughly 10 years before
consumer machines are capable of
tracing the few billion rays required
to render the game setups that are cur-
rently available. And in 10 years, the
requirements for games and real-time
graphics in general might be different,
perhaps calling for higher resolutions
or yet-to-be-thought-of algorithms.

Hybrid Future
Skeptics may claim, with some justifi-
cation, that real-time ray tracing is a
pipe dream that will never be realized;
the hardware will always be too slow.
Even if the hardware becomes fast
enough to handle 16 rays per pixel in
a full-resolution scene, that may not be
enough to achieve all the lighting effects
that photorealistic ray tracing may call
for. With this in mind there is a growing

train of thought that the future may be
a hybrid approach that combines both
rasterization and ray tracing.

Combining rasterization and ray
tracing is an old idea in computer
graphics. The basic approach uses ras-
terization to decide which triangles can
be seen on the screen and then uses ray
tracing to perform the shading calcula-
tions. This method can be used with
current GPU hardware, employing ray
tracing selectively to add reflections
and refractions in strategic places.
There is little doubt that future genera-
tions of real-time graphics for games
will use this approach for as long as
the pure ray-tracing approach is unat-
tainable on available hardware.

Pixar uses a hybrid rendering tech-
nique to create its movies based on the
Reyes algorithm, an advanced form of
rasterization. (Reyes is an acronym for
“renders everything you ever saw.”)
Reyes generates micropolygons—scene
geometry is tessellated at render time
into pixel-sized triangles or quadrilat-
erals. The use of micropolygons makes
it possible to create complex geomet-
ric effects through the use of displace-
ment mapping—similar to the bump
mapping described earlier except that
it actually displaces the geometry, on
a tiny scale, rather than just giving the
appearance of displacement. This is a
powerful way of creating details such
as the pores on human skin, although
it can generate significantly more
complex geometry than current ray-
tracing algorithms can deal with. Mi-
cropolygon rendering can be practical
on GPUs, and if future games were to
use micropolygon rendering, the visual
quality of a game could be similar to
that of the movie Toy Story. However,
micropolygon rendering fails at sim-
ulating the same lighting effects that
limit rasterization. Pixar’s response has
been to use ray tracing coupled with
micropolygon rendering in a hybrid
setup. But when making its movies,
Pixar doesn’t have to worry about how
long it takes to render a frame.

There is another alternative to ray
tracing—trick the human observer.
Perhaps it is not necessary to have
fully accurate lighting and reflections
in the next generation of games. This is
the approach that current games use.
The real-time graphics community has
developed many tricks that deliver
great-looking graphic images in real
time. For example, NVIDIA has shown
a demo of human skin rendered with

Figure 8. Computer graphics researchers probe reality for the delicate effects that make or
break the realism of an image. Caustics appear when light that is reflected (left) or refracted
(right) accumulates or cancels, generating exotic shapes and hues that the observer may not
recognize, but expects. (Photograph courtesy of Tomas Akenine-Möller.)

2010 March–April 139www.americanscientist.org © 2010 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

subsurface scattering running in real
time on a GPU. Clever filtering tech-
niques generated rendered images that
looked very convincing; few people
could see the difference between their
result and a ray-traced image. How-
ever, an approach based on tricks has
limitations. Each trick is usually highly
specialized and often does not mix
well with other tricks. For example,
it would likely require acrobatic cod-
ing to simulate indirect lighting on a
human face with simulated subsur-
face scattering. This ultimately is what
makes ray tracing attractive. It scales
very well with the addition of process-
ing power, and it is trivial to account
for advanced lighting effects by simply
tracing more rays.

The annual SIGGRAPH confer-
ence (Special Interest Group, Graph-
ics) is the premier venue for computer
graphics research. At the August 2009
SIGGRAPH, the crowd-pleasing Com-
puter Animation Festival component
of the program presented the debut of
a new session, Real-Time Rendering,

in which developers demonstrated
their most advanced real-time games
and other applications alongside the
ground-breaking prerendered works
that are the staple of the conference.
NVIDIA and Intel both demonstrated
real-time ray tracing on their hardware.
Intel, using their current-generation
CPU architecture, code-named Ne-
halem and released in late 2008, dem-
onstrated a ray-traced game scenario
running at approximately 15 frames
per second, featuring a sea bottom vis-
ible through the shimmering surface of
a lagoon. Progress is being made.

Some years ago, veteran game de-
veloper Billy Zelsnack said, with hope-
ful irony, “Pretty soon, computers will
be fast.” Those words remain as true
today as the day they were spoken. We
add this, with less ambiguity: “Pretty
soon, photorealism will be real-time.”

References
Akenine-Möller, Tomas, Eric Haines and Naty

Hoffman. 2008. Real-Time Rendering, 3d
ed., A. K. Peters Ltd.

Jensen, Henrik Wann. 2001. Realistic Image Syn-
thesis Using Photon Mapping, A. K. Peters.

Myer, T. H., and I. E. Sutherland. 1968. On the
Design of Display Processors. Communica-
tions of the ACM 11:410–414.

Pharr, Matt, and Greg Humphreys. 2004. Phys-
ically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann.

Seiler, Larry, Doug Carmean, Eric Sprangle,
Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jere-
my Sugerman, Robert Cavin, Roger Espasa,
Ed Grochowski, Toni Juan, and Pat Han-
rahan. 2008. Larrabee: A Many-Core x86
Architecture for Visual Computing, ACM
Transactions on Graphics 27:18.1–18.15.

Whitted, Turner. 1980. An Improved Illumina-
tion Model for Shaded Display. Communica-
tions of the ACM 23:343–349.

For relevant Web links, consult this
 issue of American Scientist Online:

http://www.americanscientist.org/
issues/id.83/past.aspx

