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Abstract

This paper introduces a new method for real-time relight-
ing of scenes illuminated by local light sources. We extend
previous work on precomputed radiance transfer for distant
lighting to local lighting by introducing the concept of un-
structured light clouds. The unstructured light cloud en-
ables a compact representation of local lights in the model
and real-time rendering of complex models with full global
illumination due to local light sources. We use simplification
of lights, and clustered PCA to obtain a compressed repre-
sentation. When storing only the indirect component of the
illumination, we are able to get high quality with only 8–
16 lighting coefficients per vertex. Our results demonstrate
real-time rendering of scenes with moving lights, dynamic
cameras, glossy materials and global illumination.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Shading

Keywords: Lighting design, global illumination, precom-
puted radiance transfer, real-time rendering

1 Introduction

For real-time lighting design, the goals are to be able to
add, remove, and change the attributes, including position,
of the lights in real time [Gershbein and Hanrahan 2000].
As the lights are moved, the illumination of the scene should
be updated in real time with all global illumination effects
such as indirect illumination, caustics, subsurface scattering,
glossy BRDFs, etc. In addition, it should be possible to
move the camera to investigate the lighting from different
angles. Unfortunately, these are conflicting goals and all
serve to illustrate the fundamental difficulty in computing
global illumination for real-time applications, as is apparent
in the previous work on this topic.

For lighting design, several deep frame buffer techniques
have been proposed. These assume a fixed camera and
store geometrical information and surface properties per
pixel [Séquin and Smyrl 1989], which allows for rapid regen-
eration of the image when surface properties or light source
properties are changed. Gershbein and Hanrahan exploit
graphics hardware to speed up this process greatly [2000].
Brière and Poulin store visibility structures for a fixed cam-
era in order to be able to quickly recompute, e.g., shadows
and reflections [1996]. This also makes it possible to sup-
port near-interactive changes of smaller pieces of geometry.
The fixed camera in the deep frame buffer algorithms does,
however, limit the usefulness of such systems.

Figure 1: Our system supports real-time rendering of complex
models such as the Sponza Atrium (120,000 triangles at 7 fps)
with global illumination. The user can interactively move the
camera and add and move the lights in the model.

Dorsey et al. have presented an impressive system for
opera lighting design [1991; 1995]. A major strength is that
it enables choreographing of time-dependent lighting. How-
ever, the positions of the lights are fixed — only the intensi-
ties of lights can change. They render new images as a linear
combination of an already rendered set of basis images, as
do several others [Nimeroff et al. 1994; Teo et al. 1997]. Sim-
ilar to the deep frame buffer these techniques also assume a
fixed camera.

Dobashi et al. [1995] precomputed the intensity at vertices
in a scene from a fixed set of point lights each having a direc-
tion intensity distribution represented by spherical harmon-
ics (SH). By assuming diffuse reflection their system enabled
camera movement and the ability to alter the intensity and
directional properties of the lights. Their system does not
allow movement of the lights or the addition of new lights
and it becomes costly for scenes with many lights as the il-
lumination at each vertex depends on the basis coefficients
for each light.

Wald et al. [2002] have demonstrated a highly optimized
global illumination system running on a cluster of PCs. They
are able to render scenes with dynamic lighting and diffuse
indirect illumination and caustics.

Recently much research has been devoted to rendering
static scenes lit by distant illumination including the pio-
neering work by Sloan et al. [2002; 2003], Liu et al. [2004],
Ng et al. [2003; 2004], Ramamoorthi & Hanrahan [2002], and
Wang et al. [2004]. These methods assume that the light-
ing environment is sampled at a single point in the center of
the scene and the result is stored as an environment map.
Common for all these methods is that they precompute light
transport in the scene for many points (vertices) and heavily
compress the resulting data. This makes it possible to inter-
actively render scenes with time-varying illumination and in
some cases with global illumination.

For non-distant illumination, it is not sufficient to sample
the lighting environment only once. Instead, the lighting
environment must be sampled at many locations in order to
accurately represent incident radiance on the different parts
of the model,

Annen et al. [2004] present one way of overcoming this
problem. In addition to evaluating the lighting environment
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Figure 2: Overview of our real-time lighting design system. It consists of a pipeline of three preprocessing tools, which produce a
compressed representation of the lighting that is used in the last step (right) for real-time interactive lighting design: 1) the outgoing
radiance due to a set of input lights is computed at each vertex, x. 2) the lights are clustered into sets of similar lights per zone; this
results in an unstructured light cloud, 3) the lighting vectors at each vertex are compressed using clustered PCA, and 4) for real-time
rendering, a new light (red circle) is inserted into the unstructured light cloud, and the illumination of the vertices is computed in real
time.

at the center of the scene, they also compute the gradients,
which allow them to perform a first-order Taylor approxima-
tion. This enables the authors to handle what they call mid-
range illumination, which assumes that the visibility in the
neighborhood of a point, x, remains static. As the authors
point out, this is hardly ever true, but for low-frequency
lighting environments, it can serve as a good approximation.

In this paper, we present a full global illumination relight-
ing system with real-time performance that supports local
light sources. We assume that the geometry of the scene
is static, but light positions and intensities can be changed,
lights can be added or removed, materials can be glossy,
and the camera is fully dynamic. Thus our system is more
flexible and more realistic than the previous ones.

Our algorithm is fundamentally different in that we repre-
sent source lighting in a light cloud encompassing the scene
instead of using, e.g., environment maps. For each point in
this cloud, we precompute a full global illumination solution
for each vertex in the scene as if the scene was lit by a unit in-
tensity light placed at this position. The precomputed data
is compressed using clustered principal component analysis,
and rendering is done directly from the compressed data.
An example of a scene rendered using this method is shown
in Figure 1.

2 Precomputed Radiance Transfer

Global illumination systems based on precomputed radiance
transfer (PRT) [Sloan et al. 2002] solve a reduced version of
the rendering equation [Kajiya 1986]:

L(x, ~ωo) =

Z
Ω2π

Li(~ωi) fr(x, ~ωi, ~ωo) v(x, ~ωi) (~ωi · n) d~ωi, (1)

where L is the reflected radiance in direction ~ωo from a point
x with normal n. Li is the incident radiance from a distant
environment, and therefore does not depend on x, fr is the
BRDF, and v is the binary visibility function. For static
scenes, a transport operator, T (~ωi, ~ωo), can be defined as:

T (~ωi, ~ωo) = fr(~ωi, ~ωo) v(x, ~ωi) (~ωi · n), (2)

which then reduces Equation 1 to:

L(x, ~ωo) =

Z
Ω2π

Li(~ωi) T (~ωi, ~ωo) d~ωi. (3)

The power of PRT techniques comes from observing that
T (~ωi, ~ωo) and Li(~ωi) can often be represented much more
compactly in certain other bases than the standard ex-
plicit angular representation. This means that the sig-
nals can be represented using only a few terms, and thus,

T ≈ T̃ =
P

k tkΨk and Li ≈ L̃i =
P

lki Ψk, where Ψk are
the basis functions. Spherical harmonics [Sloan et al. 2002]
and Haar wavelets [Ng et al. 2003] are currently the most
commonly used bases for PRT. In the case of spherical har-
monics, PRT supports efficient rotation [Kautz et al. 2002]
of the lighting environment. With an orthonormal basis and
diffuse surfaces, Equation 3 reduces to:

L(x, ~ωo) =
X

k

lki tk. (4)

This equation is a simple dot product, which can be effi-
ciently evaluated using graphics hardware for a sufficiently
small number of terms. For glossy surfaces, the dot product
is replaced with a matrix/vector multiplication. The visibil-
ity can also be factored out of Equation 3 and represented
in the same basis, but then a triple product [Ng et al. 2004]
is needed for evaluation.

3 Precomputed Local Radiance Transfer

To account for local lighting in precomputed radiance trans-
fer, it is necessary to solve the full rendering equation [Kajiya
1986]:

L(x, ~ωo) =

Z
Ω2π

Li(x, ~ωi) fr(x, ~ωi, ~ωo) (~ωi · n) d~ωi, (5)

The primary difference between this equation and Equa-
tion 1 is that the incident radiance, Li, now is a function
of position as well. While this may seem like a small change,
it adds significant complexity to the problem as the dimen-
sionality of the incident radiance increases from 2D to 4D
(assuming that the position x is on a 2D surface). A direct
replacement of the environment map in precomputed radi-
ance transfer by a light field is not practical as it would be
too memory consuming and difficult to manipulate in real
time for lighting design.

Our solution to this problem is to discretize the incident
lighting into a set of localized lights (as shown in Figure 2).
For each light, we precompute the exitant radiance [Wood
et al. 2000; Chen et al. 2002] for the vertices in the scene by
evaluating Equation 5. For a given vertex, x, the radiance
Lj due to light source j is computed as:

Lj(x, ~ωo) =

Z
Ω2π

Lj
i (x, ~ωi) fr(x, ~ωi, ~ωo) (~ωi · n)d~ωi, (6)

where Lj
i is the incident radiance (both direct and indirect)

at x due to light j. For each vertex, we represent the exi-
tant radiance using spherical harmonics. This makes it pos-
sible to handle glossy materials. Since spherical harmonics



are defined on the sphere, whereas the exitant radiance is
hemi-spherical, we use the least-squares optimal projection
technique [Sloan et al. 2003].

The spherical harmonics coefficients, Xij , for a given ver-
tex are computed as:

Xij =

Z
Ω4π

L̃j(x, ~ω) yi(~ω) d~ω. (7)

With an n’th order spherical harmonics representation, each
vertex stores nb = (n+1)2 coefficients per light (where nb =
1 for diffuse surfaces). For nl lights, this means that X =
{Xij} is an nb × nl matrix. Even for simple models, this is
a significant amount of data, and we therefore use a novel
multi-stage compression technique to reduce the size of X
by several orders of magnitude.

Initially, we cover the space of possible lighting configu-
rations by using a uniform sampling of light sources in the
space that will be used for real-time lighting design. Any
sampling scheme can be used here to address specific needs
of the design problem (e.g. denser sampling along walls etc.).
As described in the previous paragraphs, we precompute the
exitant radiance representation, Xij , for each vertex. In or-
der to reduce the size of X, we first divide the geometry
into a set of discrete zones. For each zone, a clustering of
the lights is performed such that similar lights are combined
into one light (see Section 4.1). This technique is partic-
ularly effective at reducing the number of lights far away
from the zone. The output of the light clustering step is an
unstructured light cloud, which in our examples have up to
roughly an order of magnitude fewer lights than the original
sampling scheme.

After clustering the lights for each zone, we perform com-
pression of the remaining spherical harmonics coefficients
using clustered PCA (similar to Sloan et al. [2003]). Since
CPCA is done within each zone, it is able to compress the
coefficients efficiently (see Section 5).

For rendering, we allow the user to insert a light at an
arbitrary position in the cloud, and approximate the effect of
this light from the lights in the cloud. For each PCA cluster,
we use this filtered representation of the user-defined light to
compute the effect on the PCA basis vectors yielding a set of
basis vectors particular to this light configuration. Finally,
we combine these new basis vectors with weights specific to a
given vertex in the cluster to obtain the final approximation
of the exitant radiance, a, in the SH basis. Evaluating the
radiance reflected in the direction of the viewer can then be
done using a dot product of this vector and a vector of SH
basis function evaluated in the direction of ~ωo:

L(x, ~ωo) ≈ y(~ωo)
T a. (8)

4 Constructing the Light Cloud

The light cloud defines the region of interest in the model. If
a lighting designer is interested in placing lights in a smaller
part of the scene then the light cloud can be restricted to
that region, which reduces the cost of precomputation.

Determining an optimal representation of the light cloud
is extremely difficult. We initially considered using a hier-
archical grid, but this structure was problematic in terms of
how to smoothly interpolate between different levels of the
grid and how to refine it adaptively. Instead, we decided to
use a two-stage approach to construct the light cloud. Ini-
tially, we make a sufficiently dense uniform sampling of the
region of interest (typically hundreds or thousands of lights).
This light cloud is then simplified by clustering similar lights.

For the dense light cloud, we evaluate Equation 5 using
photon mapping [Jensen 2001]. For each light, a photon
map is constructed and the reflected radiance at each vertex
is evaluated using the nearest photons. In some scenes, we
also use a gathering pass (Monte Carlo ray tracing of the first
bounce of indirect lighting at a vertex) to reduce the num-
ber of photons needed to get sufficient quality. Finally, we
project the outgoing radiance at each vertex onto the spher-
ical harmonic basis to get the coefficients, Xij , described in
Equation 7.

4.1 Clustering the Lights

To simplify the light cloud, we apply a bottom-up cluster-
ing algorithm that effectively combines several lights with a
similar response at the vertices into one single light source.
In the multivariate analysis literature, our approach is a sin-
gle linkage clustering technique; cf. [Johnson and Wichern
2002]. To estimate whether two lights, indexed by j and k,
are sufficiently similar and can be combined, we compute
the following metric:

∆jk =w1||pj−pk||+w2max
c

24vuut nX
i=1

(Xc
ij −Xc

ik)2

35+Vjk, (9)

where w1 and w2 are user-specified weights, pj and pk are
the positions of the two lights (this metric assumes that the
light cloud contains point lights — directional lights would
require an additional penalty based on the direction of the
lighting), and Xc

ij is described in Equation 7, with c being
an index to a particular vertex. Vjk is 0.0 if the two light are
mutually visible, i.e., there is no geometry lying in between,
and 1.0 otherwise. If ∆jk < 1 then the lights are consid-
ered “close.” Note that for diffuse surfaces, the expression
in brackets in Equation 9 simplifies to ||Xc

0j − Xc
0k||. The

weight w1 determines how spatially distant lights can be at
most in order to be merged, while the weight w2 controls
the maximum difference in the response over all vertices,
and thus providing an upper bound of the radiance error in-
duced by a merge. The Vjk-term sees to it that only lights
that are not obscured can be merged. The goal of the metric
is to combine lights that are close to each other and have a
similar response at the vertices in the scene. Initially, we
considered skipping the distance term, but that ended up
oversimplifying those parts of the point cloud that had very
similar response at the vertices. This, in turn, made the
subsequent interpolation step (Section 6.1) very inaccurate.

One complication of the metric is the weighting of both
distances and radiance values. These values are unrelated
and w1 and w2 should be adjusted accordingly. w1 should be
roughly proportional to the reciprocal of the scene size with
a larger w1 penalizing distant lights more, and w2 should be
related to the reciprocal of the largest intensity in the scene
with a larger w2 penalizing differences in the radiance values
more. To avoid using a w3 value to penalize the visibility
term (ensuring that only mutually visible lights are merged),
we have normalized w1 and w2, such that the maximum error
given by the metric should be one. Both w1 and w2 are scene
dependent: in scenes with complex illumination details, they
should be large to preserve the detail of the light cloud, while
they can be small in simple scenes. Smaller values lead to a
more aggressive reduction of the size of the light cloud.

Now, assume that we have two clusters, G and H, of
lights, containing each mg and mh local lights. These can
be merged into a super-cluster only if ∆jk < 1 for all pos-
sible pairs: (j, k) ∈ G × H. Our clustering approach starts
by creating a cluster for each of the original light sources.



This is called the cluster list. A priority queue is then ini-
tialized so that it contains a sorted list of all possible cluster
pairs in the cluster list, sorted by ∆jk. The cluster pair with
smallest ∆jk is then removed from the queue, and the re-
spective clusters are removed from the cluster list, and all
∆’s containing either j or k are removed from the queue.
The two clusters are then merged, and the queue updated
with the ∆sk for the merged cluster, s, and all clusters, k,
in the cluster list. As a final step, the merged cluster is put
in the cluster list. New clusters are merged until all pairs
in the queue indicate that ∆jk ≥ 1. At that point, no more
clustering can be done, and the lights in each cluster are
replaced by a single light, positioned at the average of all
pk, and each vertex now stores, for each cluster, an average
exitant surface radiance vector Xij , computed as the har-
monic mean over the lights in each cluster. Alternatively,
for higher quality, a new global illumination solution can be
computed for each of the new light source positions.

4.2 Zoning

To further optimize the light cloud, we present a new tech-
nique where the geometry of the scene is partitioned into
different zones. For each zone, we perform the above clus-
tering process of the lights separately. This is illustrated in
Figure 3. The advantage of this is that lights far away from a
zone automatically get clustered much more aggressively. In
three dimensions, this makes an even bigger impact — a real
example is shown in Figure 4. To split a scene into zones,
a simple top-down partitioning algorithm is used, where the
box of the scene is split recursively along the longest axis of
the box until some stopping criteria is met.

Interestingly, the zoning made it possible to handle much
larger scenes in the precomputation step. The reason is that
only one zone at a time need to reside in memory.

5 Compressing Surface Radiance

We reduce storage requirements and increase rendering per-
formance (see Section 6) by compressing the per vertex ma-
trices, X, with np = nb × nl elements per color channel
before compression.

We use the clustered principal component analysis
(CPCA) algorithm as presented by Sloan et al. [2003], who
used it for a similar purpose. The algorithm is based on lo-
cal PCA [Kambhatla and Leen 1997] and uses an iterative
clustering strategy to decide how many basis vectors, n, to
assign each cluster.

Initial clustering of the vertices is done using k-means
(Lloyd relaxation). In each subsequent iteration, we first

A

+

B CZone I Zone II

Figure 3: (A) shows an initial dense light cloud computed on a
grid. Each yellow circle is a point light, and for each of those, the
lighting has been computed at the vertices of the geometry (black
box). (B) if all geometry is considered, then the simplification
process creates 37 merged cluster lights from the 8 × 8 original
lights. (C) A superior result is obtained when the geometry is
split into several zones (in this case, only 2), and clustering is
done separately for each zone. 24 clustered lights are obtained in
this case.

Figure 4: The left image shows all 1024 lights in the original
dense light cloud. To the right, these lights have been simplified
to only 101 lights for the geometric zone at the lower left (blue).
All yellow spheres are light sources. Note that half of the original
light sources are located above the maze.

compute the cluster mean, Xm, using the nv currently as-
signed vertices. For each cluster we then construct a nv×np

matrix:

M =

264 X1
1 −Xm

1 . . . X1
np

−Xm
np

...
. . .

...
Xnv

1 −Xm
1 . . . Xnv

np
−Xm

np

375 , (10)

and perform a local PCA. We then proceed to assign a PCA
vector to the cluster where adding this vector would give
the largest per vertex decrease in approximation error. This
cluster can be found from M ’s (n + 1)’th largest eigenvalue
divided by nv .

After assigning PCA vectors, we redo the clustering of
the vertices but this time based on the approximation error
computed using the currently assigned number of PCA vec-
tors, n, in each cluster. We typically repeat this step 20–30
times or until convergence (no vertices changed cluster in
the previous step).

We continue adding PCA vectors until we reach a desired
average number of basis vectors per vertex. These basis
vectors, written for clarity here as nb×nl matrices, Bi, allow
us to approximate each member of a given cluster as:

X ≈ Xm +

nX
i=1

Bi zi, (11)

with z1 . . . zn being particular to a given matrix X.
In order to avoid discontinuities across borders between

different clusters, we linearly blend across triangles shared
between multiple clusters [Sloan et al. 2003]. When render-
ing a cluster, the vertices in the cluster are assigned a weight
of αi = 1, while all other vertices are assigned αi = 0. Blend-
ing is performed for triangles with both types of weights,
while the other triangles belonging to the cluster are ren-
dered as usual. We use the same method to blend at the
borders between geometric zones.

Discussion Our method allows us to represent direct illu-
mination, indirect illumination, or both, for a given scene.
Direct illumination includes high frequency content, which
compress poorly using CPCA. An example is shadow bound-
aries from point lights. In contrast, it is well known empir-
ically that indirect illumination, in the absence of caustics,
varies much more smoothly and thus compresses much bet-
ter. For this reason, we have found it advantageous, for
scenes where we base the illumination on point lights, to
represent only the indirect illumination using our method,
since this enables us to achieve very high compression ratios
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Figure 5: The graph shows how much of the variation in the data
is accounted for by each PCA vector. The indirect component of
the illumination tends to compress much better than the direct
component, as indicated by the much faster falloff. Data is from
the back wall of the Cornell box.

using CPCA. We render the direct illumination term using
graphics hardware.

On the other hand, when both direct and indirect illu-
mination are compressed using our techniques, other types
of light sources are possible. For example, instead of us-
ing point lights, one can use diffuse spherical light sources.
These provide soft shadows, which in general contain a much
lesser amount of high frequency content compared to point
lights. As a further alternative, soft shadows can also be
rendered using graphics hardware [Assarsson and Akenine-
Möller 2003], and thus only indirect illumination could again
be compressed.

Figure 5 illustrates the difference in compression ratio that
can be achieved when compressing the direct and indirect
component separately.

6 Real-Time Relighting

Once the lighting information has been compressed at the
vertices, the scene can be relit in real time. The goal is
to insert a light source at an arbitrary position in the light
cloud, and rapidly reconstruct the exitant radiance at all
the vertices in a given direction, ~ωo, using our compressed
representation. This section describes the different steps of
this process.

6.1 Adding New Lights

uGiven a user defined light source configuration consisting
of a light source location, l, inside the light cloud and the
light’s power, Φl, the effect of this light source can be ap-
proximated using nearby local lights in the light cloud. We
organize the local lights in a kd-tree and locate the m near-
est lights using a fast search algorithm [Bentley 1975]. For
isotropic lights, the distance is the Euclidian distance, while
lights with a directional emission pattern requires a 5D kd-
tree. The distance from l to the farthest of these m lights is
denoted r, and thus l and r can be seen as a sphere used for
filtering. See Figure 6 for an illustration of this.

light cloud
illuminated
geometryx

= precomputed local lights
desired local
light position

l
r

Figure 6: A vertex, x, should be lit by an imaginary isotropic
point light positioned at position l. In this case, there are four
precomputed local isotropic point lights inside a sphere with ra-
dius r. These are used to interpolate the exitant surface radiance
at x.

With an appropriate filter kernel, a vector wt (used in
Equation 12), with nl elements, is created that weighs
the closer light sources more than the distant ones. To
get smooth interpolation and avoid undesirable “popping”
effects when the user moves a light source and a previ-
ously used local light source suddenly is located outside the
sphere, we set the weight for each precomputed local light to
wi = (1 − di/r)4 [Silverman 1986], where di is the distance
from the precomputed local light to l. When all weights
have been computed, normalization is used to ensure that
the weights sum to one, and then all weights are multiplied
by Φl, the power of the light at l.

Locating the nearest light sources based solely on distance
can lead to artifacts. Imagine a user defined light source
position near a thin wall with light sources from the light
cloud located on both sides of the wall. If some of the m
nearest lights are on the far side of the wall, these lights
may get assigned a non-zero weights, resulting in both sides
of the wall being illuminated. To solve this problem, we only
use lights that are directly visible from l (this can be tested
efficiently using ray tracing with a few rays).

Although this strategy solves the problem of light “leak-
ing” through walls, it also has the unfortunate side effect of
creating potential discontinuities in the illumination as the
user moves the light source. The reason is that local lights
with non-zero weights inside the sphere can suddenly dis-
appear due to occlusion, while others may appear abruptly
with non-zero weights. To avoid this, we smoothly fade out
lights over time that previously were assigned a non-zero
weight, but that now have become obscured by geometry.
Similarly we detect local lights that has recently become
visible and smoothly fade them in.

Multiple user-defined light sources are handled by com-
puting a weight vector, wk, for each light source. The total
weight vector can then be computed by summing the weight
vectors for all lights, wt =

P
k wk.

6.2 Computing Exitant Radiance

Given the weights for each light in the cloud, we compute the
exitant radiance directly from the compressed representation
of X:

L(x, ~ωo) ≈ y(~ωo)
TXwt ≈ y(~ωo)

T

 
Xm +

nX
i=1

Bizi

!
wt (12)



To obtain efficient rendering suitable for graphics hardware,
we rewrite Equation 12 as:

L(x, ~ωo) ≈ y(~ωo)
T

 
Xmwt +

nX
i=1

Biwtzi

!

= y(~ωo)
T

 
xm +

nX
i=1

bizi

!
,

where xm = Xmwt and bi = Biwt. The xm and bi are
constant for each cluster, and only need to be evaluated
once before the rendering of a cluster begins.

6.3 Fast Evaluation using Graphics Hardware

We use a multipass rendering algorithm to an offscreen
floating-point buffer to obtain images with full global illu-
mination using our methods. In the first pass, we initialize
the depth buffer from the current viewpoint, and after this,
we disable writing to the depth buffer. For the remaining
passes we enable additive blending.

We reconstruct the vector of SH coefficients representing
exitant radiance in a vertex program by evaluating:

a = (xm +

nX
i=1

bizi) αi. (13)

Recall that this is the same a as being used in Equation 8.
We multiply by αi to ensure that we get correct blending at
the borders between clusters and zones.

The final evaluation of the exitant radiance is done in a
fragment program. We precompute and store the SH ba-
sis functions in low-resolution cube maps. During render-
ing, we perform a lookup in the cube maps in the direc-
tion ~ωo, and compute exitant radiance using a dot product
with the interpolated vector a of SH coefficients. This effec-
tively evaluates Equation 8. If direct illumination was not
included in the previous pass, the direct illumination is ren-
dered using graphics hardware with point lights, or possibly
area/volumetric lights.

Finally, we render our floating-point frame buffer to a
screen-sized quadrilateral, and at the same time perform on-
the-fly gamma-correction.

7 Results

We have implemented the real-time lighting system on a PC
with a 3.4GHz Pentium 4 and a GeForce 6600 graphics card.
Our implementation supports isotropic point lights and dif-
fuse sphere lights as the lighting basis. In the following test
scenes, we render direct illumination using shadow mapping.
Table 1 summarizes various statistics for the scenes discussed
in the following.

The first test scene, shown in the top row of Figure 7,
demonstrates global illumination in a Cornell box. This
scene contains only diffuse surfaces and renders at 58 frames
per second. We used eight zones and 30 PCA clusters, which
resulted in 12 coefficients per vertex. In the bottom row, we
have created a hole in the wall of the Cornell box to cre-
ate stronger indirect lighting and demonstrate how a small
movement of the light can produce significantly different il-
lumination in the scene. This is particularly noticeable as
the light source moves from outside the box through the
hole and into the box. For this model we used 10 zones and
18 PCA clusters, which also resulted in 12 coefficients per
vertex.

Figure 7: Top row: the Cornell box with different light positions,
rendered with full global illumination at 58 fps, while the user
moves the light source around. Bottom row: the Cornell box with
a hole in the wall that creates strong indirect illumination and
discontinuities in the lighting. The left image shows the lighting
of the model when the light is outside the window, and the right
image shows how the lighting changes as the light moves inside
the model. Rendering done at 55 fps, while the light source is
being moved.

Figure 8 shows the results of CPCA applied to the Cor-
nell box scene. We are able to achieve good compression
rates when compressing the indirect illumination, reducing
the number of coefficients stored per vertex from 216 for the
uncompressed light cloud to fewer than 16 without notice-
able loss of quality.

Figure 9 shows a glossy bunny in an enclosure. The glossy
materials reflect each other as well as the indirect illumina-
tion from a red and blue wall. For this scene we used a
third order spherical harmonics approximation of the glossy
Phong model (we used a coefficient of 12). This scene renders

Figure 8: CPCA compression of the irradiance in the Cornell
box. Images show (left to right, top to bottom) cluster mean only,
reconstruction using two, four, eight, and sixteen PCA vectors.
The last image shows the uncompressed result for reference.



Scene Triangles Zones nb w1/w2 Org. lights Red. lights Clusters Vectors tprecomp tcomp fps

Cornell 4k 8 1 0.5/20 216 53 30 12 2h 1h 58
Window 5k 10 1 0.8/5 250 49 18 12 3h 2h 55
Bunny 11k 11 16 * 125 125 22 16 6h * 7
Maze 43k 16 1 0.5/300 1024 128 191 16 6h 3h 7
Sponza 120k 204 1 0.12/500 144 56 366 16 8h 4h 7

Table 1: Sizes, settings, and timings for the scenes in the results section. The global illumination calculations and CPCA
compression were performed on a small cluster of commodity PCs. The glossy bunny was only compressed with CPCA.

Figure 9: The left image shows a shiny bunny rendered using
our method. The bunny demonstrates glossy reflections of both
direct and indirect illumination. Exitant radiance is stored using
a third order SH approximation (16 basis functions). The right
image shows a ray traced reference.

at 7 fps, and it has roughly 40 clusters with 16 coefficients
per vertex.

Figure 10 demonstrates real-time lighting of a complex
model, the Sponza Atrium with 120,000 triangles. We used
205 zones, and approximately 144 lights to illuminate this
scene. Clustering reduced the number of lights to 56, while
CPCA compressed the number of coefficients per vertex
down to 16. This scene renders at 7 fps.

Our last test scene in Figure 11 demonstrates global illu-
mination in a maze. It has complex discontinuities in the
visibility and strong indirect illumination. We initially illu-
minated this scene using 1024 lights; clustering reduced the
number of lights to roughly 130 per zone, while CPCA fur-
ther reduced this to roughly 16 coefficients per vertex. This
scene has 42450 triangles and it renders at 7 fps.

8 Conclusion and Future Work

We have presented a system for real-time lighting design
based on precomputed local radiance transfer. Contrary to
existing methods, our system supports dynamic local light
sources, camera movement and glossy materials with full
global illumination. Key to making our method practical
is the concept of the unstructured light cloud. We use this
sparse representation of local light sources in combination
with clustered PCA in a novel two-stage compression tech-
nique to reduce storage and increase rendering speed. We
have demonstrated that our system handles indirect illumi-
nation efficiently for models with more than 100,000 trian-
gles. Thus, our algorithm offers a practical alternative to the
traditional ambient term often used in real-time graphics.

For future work, spotlights with emission described by
spherical harmonics could be incorporated into our frame-
work. Furthermore, hardware-accelerated soft shadows

Figure 10: Lighting in the complex Sponza model. Images show
full global illumination (top), direct illumination (bottom left),
and indirect illumination (bottom right).

could be rendered using graphics hardware, and the indi-
rect illumination term using our system.
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Séquin, C. H., and Smyrl, E. K. 1989. Parameterized
Ray Tracing. In Computer Graphics (SIGGRAPH ’89
Proceedings), 307–314.

Silverman, B. 1986. Density Estimation for Statistics and
Data Analysis. Chapman and Hall.

Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Pre-
computed Radiance Transfer for Real-Time Rendering in
Dynamic, Low-Frequency Lighting Environments. ACM
Transactions on Graphics 22, 3, 527–536.

Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003.
Clustered Principal Components for Precomputed Radi-
ance Transfer. ACM Transactions on Graphics 22, 3, 382–
391.

Teo, P. C., Simoncelli, E. P., and Heeger, D. J. 1997.
Efficient Linear Re-rendering for Interactive Lighting De-
sign. Tech. Rep. STAN-CS-TN-97-60.

Wald, I., Kollig, T., Benthin, C., Keller, A., and
Slusallek, P. 2002. Interactive Global Illumination us-
ing Fast Ray Tracing. In 13th Eurographics Workshop on
Rendering, 15–24.

Wang, R., Tran, J., and Luebke, D. 2004. All-Frequency
Relighting of Non-Diffuse Objects using Separable BRDF
Approximation. In Eurographics Symposium on Render-
ing.

Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B.,
Duchamp, T., Salesin, D. H., and Stuetzle, W. 2000.
Surface Light Fields for 3D Photography. In Proceedings
of SIGGRAPH 2000), 287–296.


