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Fig. 1. We present a novel photon-driven neural path guiding approach that can effectively reduce the variance in path tracing. This complex scene is lit by

several decorative lights which are very difficult to discover in path tracing. We compare the equal-time (∼20 minutes) rendering results with standard path

tracing and state-of-the-art path-guiding methods (including Müller et al. [2017], Bako et al. [2019], Rath et al. [2020], and Ruppert et al. [2020]), showing the

crops (illuminated mostly by the lamp lights) of the rendered results with corresponding relative MSEs (rMSEs). Bako et al. [2019] use an offline trained neural

network for path guiding; however, it only supports guiding the first bounce, which is not very effective since this scene is dominated by indirect lighting.

While traditional methods allow for multi-bounce path guiding, they are mostly online learning methods and they need longer time to learn the complex

sampling functions for this challenging scene. Our method utilizes a trained deep neural network and enables effective path guiding at any path bounces.

Although Monte Carlo path tracing is a simple and effective algorithm to

synthesize photo-realistic images, it is often very slow to converge to noise-

free results when involving complex global illumination. One of the most

successful variance-reduction techniques is path guiding, which can learn

better distributions for importance sampling to reduce pixel noise. However,

previous methods require a large number of path samples to achieve reliable

path guiding. We present a novel neural path guiding approach that can

reconstruct high-quality sampling distributions for path guiding from a

sparse set of samples, using an offline trained neural network. We leverage

photons traced from light sources as the primary input for sampling density

reconstruction, which is effective for challenging scenes with strong global

illumination. To fully make use of our deep neural network, we partition the
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scene space into an adaptive hierarchical grid, in whichwe apply our network

to reconstruct high-quality sampling distributions for any local region in the

scene. This allows for effective path guiding for arbitrary path bounce at any

location in path tracing. We demonstrate that our photon-driven neural path

guiding approach can generalize to diverse testing scenes, often achieving

better rendering results than previous path guiding approaches and opening

up interesting future directions.
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1 INTRODUCTION

Monte Carlo path tracing has been widely used in photo-realistic

image synthesis. However, while simple and flexible, path tracing

can take a significant amount of time to generate noise-free images

for complex scenes (e.g., Fig. 1). One critical challenge for Monte

Carlo based methods is to effectively construct light transport paths

connecting the light and the camera.

Many path-guiding methods [Müller et al. 2017; Jensen 1995]

have been presented to construct advanced distributions (usually
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approximating incident light fields or some variants of those) for

importance sampling at local shading points, guiding the local path

sampling for high-energy path construction. The recent successful

methods are based on unidirectional guiding [Müller et al. 2017;

Rath et al. 2020; Ruppert et al. 2020]; they rely on early path samples

to discover high-energy sampling directions. Although the strategy

is generally effective, this unidirectional path discovery process can

be still slow for a challenging scene that is dominated by indirect

illumination. While using light paths is known to be efficient in

exploring the path space, previous photon-driven or bidirectional

path-guiding methods [Jensen 1995; Vorba et al. 2014] are not yet

efficient, requiring sampling a large number of light paths.

We present a novel path guiding approach that can achieve effec-

tive path sampling using a sparse set of light paths as input, thus
successfully advancing the overall rendering speed. Inspired by the

original path guiding work [Jensen 1995], we leverage photons to

compute local sampling distributions for importance sampling in

path tracing, where a sampling distribution at any 3D local region

can be obtained by binning local photons according to their direc-

tions (i.e., a 2D histogram map). However, such distributions are

only reliable with locally dense photons, and are usually low-quality

and appear noisy with sparse photons (Figs. 2 and 3).

We propose to use a compact neural network to reconstruct high-

quality sampling distributions for path guiding from low-quality

noisy histograms that are acquired by binning sparse photons. In

essence, we break down the complex path guiding problem, mainly

focusing on reconstructing local sampling distributions represented

as 2D maps (i.e., images), and thus pose this problem as one of the

image-to-image translations that can now be addressed by deep

learning techniques. Our neural reconstruction network is effec-

tively trained offline in a scene-independent way, and can recover

the shapes of complex sampling distributions on new scenes, en-

abling guided path tracing with complex global illumination effects.

Our framework is designed to reconstruct high-quality sampling

maps at local spatial regions. To make these sampling maps well dis-

tributed and locally representative in the scene space, we adaptively

partition the entire scene space into a hierarchical grid, according

to the complexity of local incident light variations. The neurally

reconstructed sampling maps are cached in leaf voxels of the grid,

enabling path guiding at different locations in a scene. Therefore,

we can support guiding path tracing at multiple bounces. Although

our approach also has specific limitations (e.g., reconstructing only

low-resolution sampling maps because of memory limit, experi-

encing uneven photon visibility), we demonstrate that our novel

learning-based path guiding often achieves better rendering qual-

ity on various challenging scenes than previous state-of-the-art

path-guiding methods when GPU resources are available (Figs. 1, 6,

and 7). The proposed reconstruction framework serves as a start-

ing point for many extension possibilities. In summary, our main

contributions are:

• We present a learning-based approach that leverages photons

to reconstruct high-quality sampling distributions locally;

• By combining with an adaptive spatial caching structure, we

support building and reusing better sampling distributions at

arbitrary bounces to reduce variance of path tracing results.

2 RELATED WORK

Monte Carlo rendering. One central problem of computer graph-

ics is to efficiently evaluate the rendering equation [Kajiya 1986],

which describes how light transports globally inside a scene. Monte

Carlo methods are among the most effective methods to compute

the light transport, which require sampling high-energy paths that

connect the camera and light for efficient rendering. Since Monte

Carlo path tracing was introduced in the seminal work by Kajiya

[1986], numerous work have developed more efficient methods to

explore path space, including bidirectional path tracing [Lafortune

and Willems 1993; Veach and Guibas 1995a] and metropolis light

transport [Veach and Guibas 1997; Pauly et al. 2000]. These methods

typically leverage importance sampling to sample sub-path direc-

tions at any bounces for each traced path traversing the scene. Since

the incident illumination is unknown, the importance sampling

usually only considers the reflectance term (with a cosine term)

in the rendering equation (more details in Sec. 3); this however is

inefficient for challenging scenes with complex indirect lighting.

Previous work [Jiang and Kainz 2021] have explored directly re-

constructing an approximation of the radiance field. Path guiding

[Jensen 1995; Vorba et al. 2019] can instead provide more efficient

importance sampling without introducing any bias. Recent guiding

work [Reibold et al. 2018] can further selectively adapts to sam-

pling problematic regions and complements the unguided strategy.

Our novel photon-driven path guiding approach can also recon-

struct high-quality sampling distributions that well approximate

the complex incident light fields, thus leading to faster rendering.

Photon-based rendering. Particle density estimation has also been

applied in computer graphics to evaluate the rendering equation,

which introduces photon mapping and many other particle- or

photon- based rendering methods [Shirley et al. 1995; Jensen 1996;

Hachisuka et al. 2008; Knaus and Zwicker 2011]. These methods fo-

cus on photon density estimation at any given shading point, which

avoids the high-frequency noise in MC rendering and is effective

for computing complex global illumination. However, photon den-

sity estimation can only provide biased radiance estimates, since it

blurs the photon contributions within a certain kernel bandwidth

(though the bias can vanish to zero by progressive photon map-

ping approaches [Hachisuka et al. 2008; Hachisuka and Jensen 2009;

Knaus and Zwicker 2011]). Our goal is not to compute photon den-

sity but to approximate incident light field for a local region (in a 3D

voxel) as sampling distributions. Therefore, we consider the integral

of irradiance over the surface area (i.e., the incident flux), which can

be effectively evaluated using photons in an unbiased way.

Recently, Zhu et al. [2020] introduce a deep learning basedmethod

for photon density estimation in photon mapping. They leverage a

PointNet [Qi et al. 2017] style neural network to process individual

photons. However, the complexity grows linearly with the number

of photons. We instead leverage a CNN [Ronneberger et al. 2015]

style network and consider a noisy photon histogram map, com-

posed by binning photons [Jensen 1995] as input; therefore, our

complexity is independent to the photon count and runs in constant

time, and we can reconstruct better sampling distributions with

more input photons.
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Path guiding. In general, path guiding aims to estimate the in-

coming light fields and draw samples accordingly to accelerate the

convergence of Monte-Carlo rendering. The traditional path guid-

ing technique is based on photons [Jensen 1995]; it traces light

paths from the light sources, distributes photons in the scene, and

constructs local photon histograms as sampling distributions for

the importance sampling in path tracing. Though very simple to

compute, such histogram-based sampling maps are only of high

quality when accumulating dense enough photons. We extend this

classical histogram-based technique to a new learning-based path

guiding framework; our method regresses high-quality sampling

maps from sparse photons, avoiding expensively tracing a large

number of photons (though still supported).

Vorba et al. [2014] present a bidirectional guiding method, where

both camera paths and light paths are guided using online fitted

parametric distributions of Gaussianmixtures at spatial cache points.

This technique was further extended to product sampling [Herholz

et al. 2016]. Recently, [Ruppert et al. 2020] propose to account for

parallax-awareness in parametric distribution modeling, leading to

state-of-the-art guiding results. However, such an online fitting pro-

cess can sometimes be unstable, thus refining mixture components

is necessary to ensure robustness. Also, the mixture model makes it

difficult to express complex incoming lights. Our approach leverages

histograms as input (easily computed online) and an offline trained

compact neural network to accelerate reconstructing distributions

with high-frequency details, although currently we do not have

flexibility to handle the parallax which is left for future work.

Recently, unidirectional guiding methods have become more ef-

fective and practical, thanks to the efficient adaptive caching struc-

ture introduced by Müller et al. [2017]. Many works extend this

framework to achieve sampling in primary space [Guo et al. 2018],

product sampling [Diolatzis et al. 2020], and variance-aware sam-

pling [Rath et al. 2020]. These methods iteratively trace camera

paths to adaptively reconstruct the incident light fields; this relies

on early iteration paths to discover the light sources, in order to

reconstruct reliable sampling distributions to guide the following

iteration paths. However, the light discovery can be slow for a scene

with dominant indirect lighting, and outliers in the early-iteration

sampling distributions can bias the path sampling in later iterations

and become hard to get fixed. In contrast, we leverage photons

that are efficient in exploring indirect light transport; our learning

based approach can recover high-quality sampling distributions

from sparse photons at an early stage, effectively relieving the prob-

lem of a slow start in the guiding and rendering. Moreover, our

photons are traced independently in each iteration, which does not

accumulate the sampling errors through multiple iterations. Also,

we are aware that path tracing is still the prevalent rendering algo-

rithm due to its simplicity and flexibility compared to bidirectional

methods, but the merit from using photons cannot be overlooked

and ours can be an alternate guiding approach when unidirectional

tracing fails.

Neural path guiding. Recently, deep neural networks have been

applied to path guiding. Müller et al. [2019] train an online neural

network to perform importance sampling directly through neural

inference. This method can reproduce accurate ground-truth sam-

pling functions, but using a neural network for direct sampling can

be relatively expensive because of the repeated online inference

and optimization steps. Some recent works leverage offline trained

neural networks [Bako et al. 2019; Huo et al. 2020]; however, they

only guide the path sampling at the primary bounce. While we also

leverage a deep neural network, our method instead leverages pho-

tons and supports guiding at any bounces, enabling better rendering

results than the first-bounce guiding approach [Bako et al. 2019] in

complex scenes.

3 BACKGROUND

Physically-based rendering can be expressed by the Rendering Equa-

tion [Kajiya 1986] that describes the radiance leaving an intersection

point 𝒙 in direction 𝜔𝑜 :

𝐿(𝒙, 𝜔𝑜 ) = 𝐿𝑒 (𝒙, 𝜔𝑜 ) +
∫
Ω
𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖𝑑𝜔𝑖 , (1)

where 𝐿𝑒 (𝒙, 𝜔𝑜 ) denotes the emitted radiance, 𝐿𝑖 (𝒙, 𝜔𝑖 ) is the inci-
dent radiance from direction 𝜔𝑖 , 𝑓𝑟 is the bidirectional scattering

distribution function (BSDF), and Ω corresponds to the full sphere.

The key component in the equation is the integral that computes the

reflected radiance 𝐿𝑟 (𝒙, 𝜔𝑜 ) =
∫
Ω 𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖𝑑𝜔𝑖

over all directions in the sphere.

The integral can be numerically evaluated using Monte Carlo

estimation [Veach 1997]:

𝐿𝑟 (𝒙, 𝜔𝑜 ) =
1

𝑁

𝑁∑
𝑖=1

𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖
𝑝 (𝜔𝑖 )

(2)

where 𝑁 Monte Carlo path samples in various directions 𝜔𝑖 are

drawn from the probability density function (PDF) 𝑝 (𝜔𝑖 ). Consider-
ing global illumination with multiple bounces, 𝐿𝑖 (𝒙, 𝜔𝑖 ) is computed

by recursively evaluating integrals using Eqn. 1. In path tracing, rays

are sampled from each intersection point to compute the radiance

that contributes to the pixel color at multiple bounces.

The variance of the Monte Carlo estimate 𝐿𝑟 (𝒙, 𝜔𝑜 ) can be re-

duced by sampling 𝜔𝑖 from a density function 𝑝 (𝜔𝑖 ) that resembles

the numerator 𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖 . Ideally, if 𝑝 (𝜔𝑖 ) and the

numerator only differ by a constant scale, the variance is reduced

to zero. However, this numerator is unknown and is as difficult

as the integral to compute, due to complex visibility and indirect

lighting in 𝐿𝑖 ; therefore, standard path tracing often proceeds with

BSDF importance sampling for indirect lighting plus a direct light

sampling technique (e.g., next-event estimation).

Path guiding aims to reconstruct a density function that matches

the shape of the numerator as closely as possible. In particular, since

the standard BSDF importance sampling satisfies [Veach 1997]:

𝑝BSDF (𝜔𝑖 ) ∝ 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) (3)

recent path-guiding methods often set the target probability density

to be proportional to the incident light [Vorba et al. 2014; Müller et al.

2017; Ruppert et al. 2020] (the following cosine term is sometimes

included in BSDF sampling in Equ. 3 instead of guiding):

𝑝
guide
(𝜔𝑖 ) ∝ 𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖 . (4)
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Fig. 2. Illustration of the entire system workflow. We partition the scene into multiple local regions using a spatial structure, where each voxel gathers

neighboring photons locally. The gathered photon statistics are accumulated in the directional space represented by a noisy histogram map with additional

features, and photons are deleted after such splatting is completed during particle tracing. Next, we use a pre-trained compact CNN to encode the input map

to neural features, followed by a decoder to reconstruct a target sampling map. The output map is reused by a local importance sampler to decide the next

sampled direction at any bounce in path tracing.

The final sampling strategy is achieved by combining the guid-

ing and BSDF sampling using either the product sampling (i.e.,

𝑝
guide
(𝜔𝑖 ) · 𝑝BSDF (𝜔𝑖 ) [Herholz et al. 2016]) or the one-sample Mul-

tiple Importance Sampling (MIS): [Veach and Guibas 1995b]

𝑝 (𝜔𝑖 ) = 𝛼𝑝BSDF (𝜔𝑖 ) + (1 − 𝛼)𝑝guide (𝜔𝑖 ), (5)

where 𝛼 is the mixture coefficient that determines the probability

of choosing BSDF sampling or guided sampling.

Many recent works rely on early path samples in path tracing to

approximate the incident light field (Eqn. 4), which is insufficient for

challenging scenes with strong indirect lighting (Fig. 1). We instead

leverage photons traced from the lights to compute the sampling

density functions, which effectively explores the challenging light

transport. Our novel approach advances the traditional path guiding

with powerful deep learning techniques and an adaptive spatial

structure, enabling effective path guiding from sparse photons.

4 OVERVIEW

Our path guiding approach uses a compact pre-trained neural net-

work to regress high-quality sampling maps that can be used to

guide path sampling. Meanwhile, we utilize an adaptive hierarchical

grid for spatially storing the reconstructed distributions, enabling

effective path guiding at multiple bounces. The whole system is

illustrated in Fig. 2.

In the following sections, we first introduce our sampling map

parameterization, target sampling density, and how to use photons

to compute the histograms in Sec. 5. We then introduce our deep

neural network that can regress better sampling maps given noisy

low-quality histograms in Sec. 6. We present our full path guiding

framework in Sec. 7, which describes our iterative sample gathering

and rendering process, adaptive spatial structure, and how paths,

photons, and the neural network are incorporated in the system.

5 COMPUTING SAMPLING MAPS FROM PHOTONS

Previous methods [Jensen 1995; Vorba et al. 2014] usually compute

hemispherical distributions at sampled surface points to approxi-

mate incident light fields. However, such hemispherical functions

approximate light fields at locally flat 2D surface regions, and are

hard to interpolate on surfaces with complex normal variations.

Inspired by the recent unidirectional path-guiding methods [Müller

et al. 2017; Rath et al. 2020; Bako et al. 2019], we utilize a full spherical

sampling distribution that models the incident light distribution in

a local 3D region. In particular, we build a hierarchical grid (Sec. 7.1)

in the scene space, and compute a spherical sampling distribution

stored in a discrete data structure for each local 3D voxel of the

adaptive grid. In this section, we discuss the representation of our

sampling function and the computation of it from photons during

particle tracing from light sources.

Spherical function representation. We use a regular directional grid

that represents the sampling density function as a 2D sampling map

(similar to [Bako et al. 2019]). We leverage the cylindrical mapping

to parameterize the spherical domain for better area preservation

(similar to [Müller et al. 2017; Rath et al. 2020]). In particular, a vector

𝑟 = (𝑥,𝑦, 𝑧) on a unit sphere is mapped to a 2D location (𝑢, 𝑣) =
(𝑧, 𝜙) on the sampling map, where 𝜙 = arctan(𝑦/𝑥). This sampling

map is similar to a standard environment map or radiance map in

traditional lighting representation, but ours is monochromatic and

uses cylindrical parameterization.

Target sampling density. As discussed in Sec. 3 (Eqn. 4), the goal

of path guiding is to compute the sampling density at any po-

sition, making it proportional to the incident light 𝐿𝑖 (𝒙, 𝜔𝑖 ) or
𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖 . For our discrete case where we consider a 3D voxel

region and a certain footprint (representing a solid angle bin) of a

sampling map, it is in fact the expected incident light that is of our

interest. In particular, given a voxel 𝑗 and a solid angle footprint

ΔΩ𝑘 of pixel 𝑘 in the sampling map, the expected 𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖
coming from the solid angle over the local surface area Δ𝐴 𝑗 (that is

of the scene geometry covered by the voxel) is expressed by:

E[𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖 ] =

∫
Δ𝐴 𝑗

∫
ΔΩ𝑘

𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖𝑑𝒙

ΔΩ𝑘Δ𝐴 𝑗
(6)

=
Φ𝑗,𝑘

ΔΩ𝑘Δ𝐴 𝑗
, (7)

where Φ𝑗,𝑘 represents the total incident power in the spatial and

directional range. Therefore, it is the total power (radiant flux)

Φ𝑗,𝑘 =

∫
Δ𝐴 𝑗

∫
ΔΩ𝑘

𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖𝑑𝒙, (8)

that governs our sampling map distribution. Essentially,Φ𝑗,𝑘 models

the integrated incident radiance. Note that the irradiance (𝐸 (𝒙,ΔΩ𝑘 ) =∫
ΔΩ𝑘

𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖 ) is a standard radiometry term and widely

used in previous works [Jensen 1995; Rath et al. 2020]; when di-

vided by the surface area, Φ𝑗,𝑘 also describes the expected irradiance
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Veach Ajar

BilateralGaussian Pull-PushPyramidNoisy Map (input)

Fig. 3. Example reconstructed sampling maps (gamma transformed for better visualization purpose). With more iterations of path and photon tracing, the

reconstructed sampling map can converge to the reference (after 8 iterations in this example). We also compare to other traditional image interpolation

techniques (3 hierarchical levels for pyramid and pull-push filters). Although they can also improve the quality of the noisy histogram maps through blurring

in general, our neural-based reconstruction is designed specifically for this task thus can produce maps closer to the targets.

(Φ𝑗,𝑘/Δ𝐴 𝑗 ) in the voxel. Therefore, we seek to obtain sampling den-

sities that are proportional to the expected incident light:

𝑝
guide
(𝜔𝑖 ) ∝ Φ𝑗,𝑘/ΔΩ𝑘 , (9)

where we ignore the Δ𝐴 𝑗 in Eqn. 7 since it is constant for all solid

angles in the same voxel. This sampling density corresponds to a

sampling map, each pixel value of which is proportional to Φ𝑗,𝑘 . We

thus reconstruct a sampling map by normalizing a power map that

records the power Φ𝑗,𝑘 in each pixel.

Computing incident power. In this work, we leverage particle trac-

ing to effectively evaluate the Φ𝑗,𝑘 (Eqn. 8). We trace light paths

from the light sources to distribute photons in the scene, where

each photon carries a portion of flux; Φ𝑗,𝑘 can then be estimated by

simply binning the photons similar to [Jensen 1995]:

Φ𝑗,𝑘 =
∑

𝜔𝑝 ∈ΔΩ𝑘 ,𝒙𝑝 ∈Δ𝐴 𝑗

ΔΦ𝑝 , (10)

where 𝑝 denotes a photon arriving at the surface point 𝒙𝑝 from direc-

tion 𝜔𝑝 , and ΔΦ𝑝 is the power carried by it. Equation 10 essentially

accumulates all the photon power inside a voxel and directional bin.

Note that Müller et al. [2017] leverages path tracing to accumulate

the radiance samples inside a local voxel; this can be seen as an

integral of the radiance over an area and a solid angle, similar to

our power expression Eqn. 8. Our particle-based approach provides

an unbiased estimate for the power integral Φ𝑗,𝑘 when the photon

count goes to infinity.

Since the evaluation is governed by accumulating splatted values

to a histogram map, we can progressively trace as many photons

as needed without storing the entire photon point cloud (required

by traditional photon mapping, leading to memory bottleneck from

more traced particles). Once a photon is accumulated to a directional

bin of the map inside a voxel, it is then deleted, except for the

initialization phase (Sec. 7.1). Note that an accurate power map

requires tracing a large number of photons, but in practice, we can

only allow for tracing a small number of photons at rendering time,

which by themselves cannot directly lead to high-quality sampling.

6 HIGH-QUALITY DISTRIBUTION RECONSTRUCTION

If directly computing sampling distributions by binning photons,

neither using dense photons (slow) nor sparse photons (low-quality)

is suitable for efficient path guiding. To overcome this, our central

idea is to obtain accurate sampling maps offline as ground truth

using dense photons, and leverage supervised learning to regress

such maps from low-quality histograms that can be computed effi-

ciently from sparse photons. Specifically, we propose to train a deep

Convolutional Neural Network (CNN) that learns to reconstruct a

high-quality sampling distribution from sparse photons.

Our sampling maps are reconstructed and updated repeatedly

through multiple iterations in our path guiding framework (Sec. 7).

We consider a normalized noisy sampling map 𝑆𝑡 as input, acquired

by accumulating a sparse set of photons from iteration 1 to 𝑡 using

Eqn. 10, where 𝑡 denotes the iteration number. We also supply the

noisy sampling map 𝑆𝑡−1 from the previous iteration to ease the

learning of where to in-paint. In addition, we record the number of

photons per solid angle bin in 𝑆𝑡 and 𝑆𝑡−1, resulting in maps 𝑃𝑡 and

𝑃𝑡−1, and include the normalized buffers in the input. Inspired by the

image inpainting techniques [Liu et al. 2018; Yu et al. 2019; Yi et al.

2020], we also concatenate a binary mask 𝐵𝑡 indicating whether a

solid angle bin contains photon data or not, and use light-weight

masked convolutions to process the input maps. As a result, our full

input is an image map with 5 separately-normalized (by the GPU)

channels and our neural network F can be expressed by:

𝑆𝑑 = F(𝑆𝑡 , 𝑆𝑡−1, 𝑃𝑡 , 𝑃𝑡−1, 𝐵𝑡 ). (11)

The output is a one-channel sampling map 𝑆𝑑 (which is then con-

verted to CDF for importance sampling), supervised by the ground-

truth map 𝑆𝑑 computed from dense enough photons.

6.1 Neural architecture and loss computation

Our network is essentially designed to solve an image-to-image

reconstruction task. Many existing 2D neural networks for image-

to-image denoising, translation, and inpainting ([Chaitanya et al.

2017; Bako et al. 2017; Vogels et al. 2018; Liu et al. 2018]) can thus

be potentially applied to address the problem. However, our neural

network is applied on a large number of voxels, while our end goal is

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:6 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

to speed up the overall rendering process. Therefore, we balance the

inference speed and reconstruction quality in the network design.

We propose to use a compact U-Net [Ronneberger et al. 2015]

style architecture with residual links and skip connections to achieve

the sampling map reconstruction as illustrated in Fig. 2 (the detailed

architecture is provided in supplementary material). It contains

multiple downsampling and upsampling convolutional layers to

extract high-level neural features from the input map 𝑆𝑡 and output

a better version 𝑆𝑑 . The input noisy sampling maps are computed

from sparse photons, which contain many empty bins. Therefore,

we use the light-weight masked convolutions inspired by the recent

image inpainting works [Liu et al. 2018; Yi et al. 2020], which en-

sures that valid (non-empty) and invalid (empty) bins are treated

differently and only valid bins can contribute to convolutions. Note

that the designed architecture is relatively compact, compared to

the previous deep networks ([Chaitanya et al. 2017; Bako et al. 2017;

Vogels et al. 2018]) used in denoising. Although the extra compu-

tational overhead introduced by the neural network is inevitable,

the compactness allows sampling map reconstruction to finish in

reasonable time on powerful GPUs. Due to limited system memory,

we reconstruct low-resolution maps (64× 128 or 32× 64), which are

already adequate for path guiding in common scenes. We believe

our architecture can be further improved by advanced compression

techniques [Cheng et al. 2018; Deng et al. 2020] and novel neural

components, and we leave this as future work.

We utilize the standard 𝐿1 loss to supervise the output sampling

map:

L𝑆 = |𝑆𝑑 − 𝑆𝑑 | (12)

where 𝑆𝑑 is the ground-truth sampling map computed by accumu-

lating dense photons. Inspired by the deep supervision [Xie and

Tu 2015; Lee et al. 2015], we also provide the ground-truth signal

on each decoding level to ease the loss back-propagation. To pre-

vent over-blurring, we leverage an asymmetric function inspired by

Vogels et al. [2018]; this leads to our full loss

Lrec = L𝑆 · (1 + (𝜆 − 1) · H) (13)

where H = 0 if the output and the input values are both larger or

smaller than the ground-truth value and H = 1 if they are not on

the same side. Specifically, when there are two equally-good output

values, the function prefers the one that is closer to the input. This

allows the reconstruction to retain some noise but also prevent

details from being blurred out.

In Fig. 3, we present some examples of the reconstructed sam-

pling maps along with the comparison with other traditional image

inpainting techniques. We can clearly see the advantage of a group

of learned filters represented by a data-driven neural network that

is trained specifically under the context of path guiding, over the

traditional hard-coded filters designed for general image processing

(not specifically for path guiding) based on human knowledge.

6.2 Discussion

The proposed neural network focuses on reconstructing high-quality

distributions for local path sampling. This is a central sub-problem in

many path guiding frameworks. Note that the problem of sampling

map regression is independent of other modules in path guiding.

ALGORITHM 1: Our neural path guiding framework. Through mul-

tiple iterations of path and light tracing, we construct a hierarchical

grid (Sec. 7.1, in green), reconstruct and update the sampling map in

each valid voxel (Sec. 7.2, in blue), and guide the path tracing using the

reconstructed distributions (Sec. 7.3, in red). We also apply a final guided

path tracing pass (Sec. 7.4, in purple).

1 Initialize 1 SPP path samples and 1 SPP photons ;

2 Initialize a spatial grid ;

3 for each iteration 𝑡 < 𝑇 do
4 Initiate 2𝑡 SPP path samples;
5 for each path do
6 for each bounce 𝑏 do
7 Locate voxel 𝑗 (𝒙𝑏 ∈ Δ𝐴𝑗 ) ;

8 if not isValid(𝑗 ) (no sampling map) then
9 Sample(𝑝BSDF) → 𝜔𝑏 ;

10 else
11 Sample(𝑝MIS) → 𝜔𝑏 (Eqn. 15);

12 end
13 markValid(𝑗 ) ;

14 end
15 Compute path throughput and 𝐿 (𝒙𝑏 , 𝜔𝑏 ) ;
16 for each bounce at 𝒙𝑏 ∈ Δ𝐴𝑗 do
17 if isValid(𝑗 ) then
18 𝐿𝑏 = 𝐿 (𝒙𝑏 , 𝜔𝑏 ) cos𝜃𝑏 𝑓𝑟 (𝒙, 𝜔𝑏 , 𝜔𝑜 ) ;
19 if 𝜔𝑏 ← 𝑝

guide
then 𝐿𝑗,Guide += 𝐿𝑏 else

𝐿𝑗,BSDF += 𝐿𝑏 ;

20 if 𝜔𝑏 ← 𝑝
guide

then𝑄 𝑗,Guide += 1 else
𝑄 𝑗,BSDF += 1 ;

21 if 𝑄 𝑗,Guide ≥ 𝑄
Thr

&𝑄 𝑗,BSDF ≥ 𝑄
Thr

then
Update 𝛼 𝑗 (Eqn. 14);

22 end
23 end
24 Update the output image ;

25 end
26 Trace 2𝑡𝑁𝑝 light paths for photons;
27 for each photon 𝑝 do
28 Locate voxel 𝑗 , solid angle 𝑘 (𝒙𝑝 ∈ Δ𝐴𝑗 , 𝜔𝑝 ∈ ΔΩ𝑘 ) ;

29 if isValid(𝑗 ) then
30 Update power map: Φ𝑗,𝑘 += ΔΦ𝑝 (for Eqn.10);

31 𝑀𝑗 += 1 ;

32 if 𝑀𝑗 > 𝑀thr then
33 Subdivide voxel 𝑗 into two sub-voxels (Sec. 7.1);

34 end
35 end
36 end
37 for each valid voxel 𝑗 do
38 Reconstruct sampling maps (𝑝

Guide
) with neural net F ;

39 end
40 end
41 Trace 𝑁𝑓 paths for final output (Sec. 7.4);

We thus train our neural network independently without relying

on any specific guiding frameworks. Therefore, our learning-based

sampling map reconstruction module can potentially be extended

to other existing path guiding frameworks by applying a proper

variant of our neural architecture (e.g., mixture models [Vorba et al.
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2014; Ruppert et al. 2020] and hierarchical maps [Müller et al. 2017;

Rath et al. 2020]), and improves the traditional sampling distribution

reconstruction modules.

7 PATH GUIDING WITH ADAPTIVE CACHING

In this section, we introduce our path guiding framework that lever-

ages the presented deep network to reconstruct high-quality sam-

pling maps in an adaptive and hierarchical spatial structure. The

whole framework is illustrated in Algorithm 1.

We first fire some initial path and light rays (Line 1), initialize

a grid (Line 2), and then utilize an iterative process (Line 3∼40) to
adaptively build a hierarchical grid with per-voxel sampling maps

for path guiding and rendering.

In each iteration, we trace camera paths (Line 4∼25); these paths
can be guided (Line 8∼12) when tracing, and they are used to detect

valid (i.e., containing path vertices) voxels (Line 13) and compute

the mixture weight of one-sample MIS (Line 18∼21). We also trace

photons (Line 26∼36) per iteration; in each valid voxel, we accumu-

late photon power (Line 31) that is required by our neural module

and collect photon statistics for subdividing the hierarchical grid

(Line 31∼34). We then reconstruct the sampling map in each valid

voxel using our pre-trained deep neural network at the end of each

iteration (Line 38∼40); these sampling maps are used to guide the

path tracing in next iteration. After the iterative process, we apply

a final-pass guided path tracing and compute the final beauty image

(Line 41).

We adaptively partitioning the scene space to a hierarchical grid

(Sec. 7.1). Meanwhile, the photons are collected for computing the

noisy sampling maps in each valid voxel (Sec. 7.2); the path samples

are used for rendering and computing the weight 𝛼 for one-sample

MIS (Sec. 7.3). After 𝑇 iterations, we run a final path tracing pass

(Sec. 7.4) with 𝑁𝑓 spp. The final rendering result is computed by

combining all iterations (except for the initialization phase) and

the final pass, weighted by the inverse of their estimated variances

[Müller 2019]. Note that we double the number of path and photon

rays (2
𝑡𝑁𝑐 and 2

𝑡𝑁𝑝 spp for iteration 𝑡 , where 𝑁𝑐 and 𝑁𝑝 are initial

values) after each iteration [Müller et al. 2017], so that both the

quality of the input noisy histograms and per-pass rendering can

be progressively improved.

7.1 Adaptive hierarchical grid

Recent work often utilize a binary KD-Tree [Müller et al. 2017; Rath

et al. 2020] to adaptively partition the space, starting from a single

root node that covers the entire scene. This coarse-to-fine spatial

structure is effective and also necessary for these online learning

approaches, since they need to acquire many samples in a large

spatial region at an early stage. In contrast, our deep learning based

approach can reconstruct a high-quality sampling map from a sparse

set of photons; consequently, starting from a single root node is

unnecessary and inefficient for our approach. Therefore, we propose

to use a hierarchical grid for spatial partitioning, which combines

uniform and adaptive spatial partitioning (Fig. 4).

Detecting valid voxels. While we can compute a sampling map for

every voxel for path guiding, this is usually costly and unnecessary,

since many voxels may not be reached by any camera path from

9DOLG�YR[HO
���VDPSOLQJ�PDS�

9DOLG�VXE�YR[HOV
���VDPSOLQJ�PDSV�

3KRWRQ

,QYDOLG�YR[HO
���VDPSOLQJ�PDS�

¨ᵔ᫚

3DWK�
ERXQFH

Fig. 4. The proposed hierarchical grid spatial caching structure. Path sam-

ples detect valid voxels to store sampling maps. A voxel is subdivided into a

binary tree based on the local photon statistics. We split through the median

to prevent skew or distorted distributions reconstructed in the initialization

phase, and switch to the middle plane splitting in the iterative update phase

when the photon point cloud is no longer stored. We alternate the splitting

dimension with respect to the tree depth.

the viewpoint. Therefore, we leverage camera paths to detect which

voxels are involved for rendering this viewpoint. Specifically, when

tracing 2
𝑡𝑁𝑐 spp path samples in each iteration, we mark a voxel

as valid, if there is at least one bounce point of the paths located

in the voxel (Fig. 4). Once a voxel is marked as valid, we then start

accumulating photons in the voxel for sampling map reconstruction

and further subdivision of the voxel. This avoids thewaste of caching

redundant distributions and local KD-trees.

Initialization phase. We start the process by firing 1 spp path and

photon rays. Path samples and photon samples are stored as point

clouds in this particular phase to initialize our spatial grid; basically,

we first build a regular grid given the spatial extent discovered

by path samples, and then subdivide the grid given the initial per-

voxel photons. Specifically, we use the collected path samples (after

multiple bounces) to determine the bounding box of our spatial grid,

which covers the visible part of the scene. We construct a regular

grid by uniformly dividing the bounding box at a relatively coarse

level (Fig. 4). Next, for each voxel in this uniform grid, we iteratively

sub-partition the voxel into a local binary tree through the median

photon which allows both sub-voxels to have a decent number of

samples for reconstruction to start with, based on the number of

photons that arrive at the voxel; this is also repetitively done in the

following iterative update phase in a similar way but with a different

splitting plane. Note that this initialization phase produces an initial

hierarchical spatial grid – a coarse regular grid with local shallow

KD-Trees. The initial grid is still coarse but relatively denser than a

single shallowKD-Tree used in early stages in previouswork [Müller

et al. 2017]. This enables reconstructing more locally representative

sampling maps, leading to better path guiding at early iterations in

our framework, and better utilizes the benefits of our pre-trained

deep neural network. The local KD-Trees are relatively shallow at

this phase because photons are sparse, which are further subdivided

in the iterative phase.

Iterative update phase. The spatial structure after the initialization

phase can be still too coarse for a later time in rendering. There-

fore, we iteratively subdivide it into a finer hierarchical grid. Our
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hierarchical grid is built to adapt to the complexity of incident light

fields. We leverage the statistics of accumulated photons in each

valid voxel for possible subdivisions. In particular, we consider𝑀𝑗

– the total number of photons hitting the valid voxel 𝑗 . A voxel is

split into two sub-voxels if𝑀𝑗 > 𝑀
thr

, where𝑀
thr

is a predefined

threshold. We recursively apply our subdivision criterion to sub-

voxels. Unlike the initialization phase, we always use middle planes

(instead of median) for splitting in this phase (same as [Müller et al.

2017]), since we do not store any photon point cloud anymore for

the sake of memory, and this strategy is generally sufficient based

on our observation. Once a voxel is subdivided, its two sub-voxels

are reset as invalid waiting to be re-evaluated, inheriting the original

noisy map with power values halved, and continue accumulating

photons from the subsequent iterations once marked valid again.

This photon-based subdivision process allows these complex voxels

to utilize more local and accurate sampling maps, thus leading to

more efficient renderings.

7.2 Sampling map reconstruction

Apart from determining the subdivision in the hierarchical grid,

the main goal of tracing the per-iteration photons is to reconstruct

the per-voxel sampling maps for path guiding. For any valid voxel

(detected by camera paths), we accumulate photon power to com-

pute the noisy power map of the voxel, as expressed by Eqn. 10.

The power map accumulates all hitting photons ΔΦ𝑝 in the voxel

through the current and previous iterations, which gets normalized

to a noisy sampling map 𝑆𝑡 as the input to the neural reconstruction

module (Sec. 6) in iteration 𝑡 . Once sampling maps are reconstructed

and updated in one iteration, they are used in the next iteration to

guide the path sampling.

7.3 Path guiding and one-sample MIS

In any iteration, if a path hits a voxel that does not have a sampling

map, we use standard BSDF sampling at the bounce point; the voxel

is then marked as valid and start accumulating photons immediately

in the same iteration, enabling guiding in the subsequent iterations.

On the other hand, once a path ray hits a valid voxel that has

a reconstructed sampling map, path guiding can be achieved by

importance sampling on the map (where CDF is built by GPUs).

Since our sampling map only considers the incident radiance, we

apply a one-sampleMIS similar to previous works to combine guided

sampling and BSDF sampling, as discussed in Eqn. 5. The combined

sampling strategy however requires a parameter 𝛼 that determines

how often either sample strategy is selected. Usually, 𝛼 = 0.5 is a

simple choice and performs reasonably well. An 𝛼 that is learned

via online optimization [Müller 2019] is also presented for better

performance. Here we propose a simpler alternatemethod to achieve

a similar goal, which can also serve as a better initialization for those

approaches that try to search for an optimal 𝛼 .

We present a heuristic 𝛼 computation technique, based on col-

lected path statistics; though simple, it results in effective per-voxel

𝛼 𝑗 in practice. In particular, we initialize 𝛼 𝑗 = 0.5 in each valid voxel.

Once a full path is constructed in rendering (either connect to ormiss

the light), we collect the reflected radiance contribution for every

bounce point 𝑏 on the path as 𝐿𝑏 = 𝐿(𝒙𝑏 , 𝜔𝑏 ) cos𝜃𝑏 𝑓𝑟 (𝒙, 𝜔𝑏 , 𝜔𝑜 ).

Meanwhile, for each voxel 𝑗 , we accumulate all bounce contribu-

tions 𝐿𝑏 (where 𝒙𝑏 ∈ Δ𝐴 𝑗 ) in 𝐿𝑗,BSDF and 𝐿𝑗,Guide, according to

from which distribution 𝜔𝑏 is sampled. We also record the number

of bounces sampled by two strategies as𝑄 𝑗,BSDF and𝑄 𝑗,Guide. Once

𝑄 𝑗,BSDF ≥ 𝑄
Thr

and 𝑄 𝑗,Guide ≥ 𝑄
Thr

sub-paths have been collected

in the voxel, we use the ratio of the averaged 𝐿𝑗,BSDF and 𝐿𝑗,Guide
to update the mixing weight 𝛼 𝑗 :

𝛼 𝑗 =
𝐿 𝑗,BSDF

𝐿 𝑗,BSDF + 𝐿 𝑗,Guide
, (14)

where 𝐿 𝑗,BSDF = 𝐿𝑗,BSDF/𝑄 𝑗,BSDF and 𝐿 𝑗,Guide = 𝐿𝑗,Guide/𝑄 𝑗,Guide.

Correspondingly, our one-sample MIS is expressed by:

𝑝MIS (𝜔𝑖 ) =
𝐿 𝑗,BSDF

𝐿 𝑗,BSDF + 𝐿 𝑗,Guide

𝑝BSDF (𝜔𝑖 ) +
𝐿 𝑗,Guide

𝐿 𝑗,BSDF + 𝐿 𝑗,Guide

𝑝
guide
(𝜔𝑖 ) .

(15)

We set 𝛼 𝑗 = 1 if BSDF is a delta function and clamp 𝛼 𝑗 between 0.2

and 0.8 otherwise to handle statistical instability. This heuristic mix-

ing weight considers the data that reflects the actual performance

of BSDF sampling and guiding sampling, leading to effective mixed

sampling in path guiding.

Fig. 5. Example scenes used for training our proposed neural network.

7.4 Rendering

Our learning based approach can reconstruct high-quality sampling

maps from sparse photons in early iterations. We therefore leverage

all path samples after the initialization phase for rendering the

final image. While we can keep iteratively tracing more rays and

refining the samplingmaps, our reconstruction are often of sufficient

quality after 𝑇 = 4∼10 iterations. Continuing tracing more photons

afterwards merely leads to marginal sampling improvement, and

the extra overhead from running the neural network cannot pay off.

Therefore, we choose to stop iterating after 𝑇 = 4∼10 depending on

light transport complexity, fix the per-voxel sampling maps, and run

a final path tracing pass (with 𝑁𝑓 spp) guided by the latest maps.
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Scene/Method PT [Bako

et al.

2019]

[Vorba

et al.

2014]

[Müller

et al.

2017]

[Rath

et al.

2020]

[Ruppert

et al.

2020]

Ours Ours-

NoFeat

Ours-

Vanilla

Gauss-

Best

Bilat-

Best

Pyrmd-

Vanilla-

Best

Pyrmd-

PullPush-

Best

Comparison SOTA rMSE ↓ Ablation rMSE ↓
Caustics Egg 0.3187 0.1353 0.0462 0.0311 0.0121 0.0074 0.0052 0.0064 0.0091 0.0305 0.0157 0.4562 0.0168

Veach Ajar 0.3684 0.2585 0.0154 0.0073 0.0047 0.0033 0.0011 0.0024 0.0030 0.0057 0.0038 0.6331 0.0073

Bathroom 0.0610 0.0403 0.0204 0.0249 0.0142 0.0028 0.0050 0.0066 0.0076 0.0225 0.0208 0.1095 0.0156

Hotel 0.4176 0.2607 0.2838 0.0812 0.0792 0.0295 0.0276 0.0332 0.0421 0.0649 0.0543 0.7533 0.0645

Staircase 0.0176 0.0183 0.0110 0.0045 0.0038 0.0055 0.0013 0.0017 0.0018 0.0041 0.0037 0.0977 0.0040

Living Room 0.1928 0.1553 0.0235 0.0468 0.0416 0.0359 0.0060 0.0094 0.0134 0.0362 0.0341 0.6201 0.0299

Spaceship 0.2212 0.0914 0.0198 0.0716 0.0389 0.0192 0.0137 0.0230 0.0384 0.0871 0.0819 0.5023 0.0792

Classroom 0.0733 0.0514 0.0124 0.0085 0.0038 0.0040 0.0021 0.0026 0.0065 0.0181 0.0156 0.1718 0.0124

Wild Creek 0.1425 0.1100 0.0560 0.0618 0.0549 0.0423 0.0382 0.0393 0.0407 0.0595 0.0478 0.1551 0.0490

Kitchen 0.0644 0.0578 0.0249 0.0063 0.0035 0.0043 0.0030 0.0036 0.0063 0.0168 0.0110 0.0907 0.0100

Pool 0.1175 0.0528 0.0026 0.0025 0.0016 0.0015 0.0011 0.0013 0.0019 0.0081 0.0034 0.1531 0.0036

Table 1. Quantitative comparison. We compare to SOTA methods [Bako et al. 2019; Vorba et al. 2014; Müller et al. 2017; Rath et al. 2020; Ruppert et al. 2020]

with equal rendering time. We show the corresponding rMSEs of the rendered full images of our testing scenes. Red, orange, and yellow denote the best, the

second-best, and the third-best method in terms of rMSE (lower is better). We also present the ablation results with multiple neural setups (without additional

features, or using a single vanilla U-Net) and traditional interpolation methods (Gaussian, bilateral, 5-level pyramid, and 5-level pull-push filters). We try

multiple adaptive strategies for parameters of each traditional filter and report the best result.

8 IMPLEMENTATION

Dataset generation and neural network training. We create a large-

scale dataset to train our sampling map reconstruction network.

The dataset consists of both designed scenes and auto-generated

scenes as shown in Fig. 5. We collect available scenes designed by

researchers and artists from previous work and several websites

[Bitterli 2016; Jakob 2010; Evermotion 2012; Trader 2020; Squid

2020; Blend Swap 2016]. This leads to 28 designed scenes, including

multiple realistic indoor and outdoor scenes; we use 20 from them

in our training set and the rest for testing our algorithm. To enhance

the generalizability of our neural network, we further enlarge our

training set by procedurally generating 500 scenes using randomized

shape primitives, materials, and area lights, similar to [Zhu et al.

2020; Xu et al. 2018]. We also leverage a complex lighting dataset

[Gardner et al. 2017] and randomly select an environment map

for each generated scene as its additional illumination. This auto-

generation process increases the diversity and complexity of our

training scenes, leading to better generalization on testing scenes.

We partition the space of each training scene uniformly using a

regular grid with a random resolution. Each voxel is a cube with a

side lengthRB/𝑟init whereRB is the diagonal length of the estimated

bounding box and 𝑟init controls the resolution ranging from 10 to 200.

This makes our pre-trained neural network generalize to various

voxel sizes in a hierarchical grid. We support the resolution of 128×
64 (default) or 64 × 32 for our sampling maps (normalized values

in half-float) given a certain amount of system memory, which is

sufficient for path guiding. For each training scene, we augment

the training set by randomly selecting multiple iteration numbers 𝑡

from 1 to 12, tracing photons and computing noisy sampling maps

based on Eqn. 10. The ground-truth sampling map is computed by

accumulating photons generated through 20 iterations.

During rendering, photons are often distributed unevenly in dif-

ferent voxels (from several to several thousand), leading to diverse

input distributions; we therefore train multiple versions of neural

network as a mixture of experts [Jacobs et al. 1991], and make each

network focus on a certain range of input photon sparsity in a voxel.

Specifically, we train five networks separately and the correspond-

ing ranges of photon numbers are [0, 100), [100, 500), [500, 1000),
[1000, 5000), [5000,∞). This enables better reconstruction quality

compared to using a single compact (i.e., low-capacity) neural net-

work. During training, we use mini-batches with a size of 50 and

train each network using ADAM optimizer [Kingma and Ba 2014]

with a learning rate of 1.0 × 10−4 until convergence.

Path guiding details. We use 𝑁𝑐 = 1 (spp) for all our experiments,

leading to 2
𝑡
spp paths for iteration 𝑡 . We also correspondingly trace

the same number of light paths (𝑁𝑝 ) per iteration for distributing

photons. The initial uniform grid is implemented as a hash grid that

can be accessed in𝑂 (1) time. Each sub binary tree is like a local KD-

tree that can be accessed in 𝑂 (log(𝑛)) time. The final hierarchical

grid is a hybrid spatial structure and can be accessed with a fast

speed at rendering time. Since our spatial structure is adaptively

constructed, it is not very sensitive to the initial resolution, and we

use a resolution of 𝑟init = 100 for all the testing scenes without over-

partitioning. For voxel subdivision, we use an iteration-dependent

threshold for the photon count, given by𝑀
thr

= 𝑐 ·
√
2
𝑡
similar to

[Müller et al. 2017], where 𝑐 is a scalar parameter depending on

the number of initial photon rays. We find 𝑐 = 400 ∼ 800 performs

reasonably in practice, and we use 𝑐 = 500 in the experiments. Note

that validity test is skipped in later iterations for subdivided voxels

that already had good enough locality, and resources are recycled

for voxels that stay invalid for a long time. In each iteration, the

maximum number of allowed new spatial levels is set to 3 to prevent
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Fig. 6. Qualitative and quantitative comparison with baseline methods ([Müller et al. 2017; Bako et al. 2019; Rath et al. 2020; Vorba et al. 2014; Ruppert et al.

2020]) in equal rendering time (ours with GPU) on complex indoor scenes. Our deep learning based approach enables accurate sampling map reconstruction

for the complex direct and indirect lighting, leading to efficient rendering. We show zoomed-in crops with rMSEs.

the cache from over densification. The number of spatial voxels in

our approach ranges from ∼30K to ∼200K in the testing scenes.

We use a machine with a 32-thread Intel Core i9-7960X CPU,

two Nvidia Titan RTX GPUs, and 128GB memory for rendering

our testing scenes. Our framework is implemented in the Mitsuba

engine [Jakob 2010], and we use the PyTorch C++ API [Paszke et al.

2019] at rendering time for sampling map reconstruction on GPUs.

This ensures a straight comparison with previous methods, most

of which are also implemented with Mitsuba. In particular, we only

use GPUs to run neural network inference for sampling map re-

construction, while all other parts of the algorithm (including path

and photon tracing, sampling, radiance computation, spatial grid

construction, etc.) run on the CPU as in Mitsuba. Detailed running

time breakdowns are provided in the supplementary material. Note

that we indeed rely on extra GPU resources, and the data copying

overhead is non-negligible although we carefully handle the data

streaming (we only exchange non-empty valid values) and paral-

lelization between CPU and GPU. A pure GPU-based framework

leveraging specialized processor cores (e.g., [Parker et al. 2010])

could be implemented to mitigate these limitations in the future,

but one may face some challenges since algorithmic changes and

proper memory handling may be needed to make it feasible.

9 EVALUATION

We now present extensive experiments to evaluate our path guiding

approach. We first evaluate the rendering quality of our method

by comparing against various state-of-the-art path-guiding methods

quantitatively and qualitatively.We then investigate sub-components

in our system to justify their effectiveness. Many additional evalua-

tion results can be found in the supplementary material.

Configuration. We evaluate our method comprehensively on 8

realistic testing scenes; the corresponding images of these scenes

can be found in Figs. 6, 7, 8, 9 and 11. These testing scenes include

diverse challenging indoor and outdoor cases with complex global

illumination. For indoor scenes containing an environment map

illumination (e.g., sunlight), we provide the window geometry for

sampling light paths from the environment map, facilitating the

photon tracing process in these scenes to increase the indoor photon

visibility. For scenes where only a small part gets rendered from the

camera viewpoint, we clamp the scenes by removing the invisible

geometries. These strategies are incorporated for compromising the

well-known photon visibility issue without the guided light tracing

for photons, which is discussed later (Fig. 13).

For our method, the required time to achieve good rendering

quality ranges roughly from 3 to 20 minutes (depending on scene

complexity) on these testing scenes. We demonstrate equal-time
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Fig. 7. Qualitative and quantitative comparison with baseline methods ([Müller et al. 2017; Bako et al. 2019; Rath et al. 2020; Vorba et al. 2014; Ruppert et al.

2020]) in equal rendering time (ours with GPU) on scenes containing transparent surfaces. We show zoomed-in crops with rMSEs. Our method achieves better

visual quality and lower rMSEs in these challenging cases.
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Fig. 8. Equal-time and equal-quality comparison. Similar to Fig. 6 and 7, we do equal-time comparisons with these best-performing methods ([Müller et al.

2017; Rath et al. 2020; Ruppert et al. 2020]). In addition, we also show equal-quality rendering time comparison. We list the corresponding rendering time

(expressed by the scale to our time) of each method for achieving the same rMSE of the full image.

comparisons (while ours requires GPU) by comparing with four

state-of-the-art CPU-based path-guidingmethods [Müller et al. 2017;

Vorba et al. 2014; Rath et al. 2020; Ruppert et al. 2020] and one GPU-

based work [Bako et al. 2019]. To better illustrate the effectiveness

of path guiding, we turn off the Next-Event Estimation (NEE) for

ours and comparison methods as done in previous work [Vorba et al.

2014; Müller et al. 2017]. Comparison results with the standard NEE

turned on are presented in the supplementary material.

Equal-time comparison. We now present the results of our method

and compare against other methods with equal rendering time. For

quantitative evaluation, we use the relative Mean Squared Error

(rMSE, as used in [Rath et al. 2020]) as the metric. We show the

averaged rMSE of the full-resolution images in Tab. 1. We also show

qualitative comparisons of rendered images in Fig. 6 and Fig. 7; Fig. 6

show results of complex indoor scenes and Fig. 7 include scenes

containing complex transparent objects.
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Fig. 9. Comparison to multiple traditional image interpolation methods and some variants of our proposed full neural architecture. Traditional 2D filtering

algorithms can also inpaint the missing sampling map values, but can result in over-blurring or residual noise in different places (we adaptively tune the

parameters for each filter and report the best result). Data-driven neural methods like ours are often better at image reconstruction and recovering missing

details. We incorporate additional features and allow multiple versions of neural network to handle different input sparsity, leading to better result than a

single vanilla U-Net.

In particular, we compare with [Müller et al. 2017; Rath et al. 2020]

that use quadtrees to represent sampling distributions and recon-

struct the trees by accumulating path samples online. Because of the

pure online learning, it can be more challenging for these unidirec-

tional methods to discover high-energy paths in early iterations of

the rendering, especially for scenes that involve complex specular-

diffuse interactions or other strong global illumination effects. In

contrast, we leverage pre-trained neural networks that can achieve

neural reconstruction of high-quality sampling maps with sparse

photons at early iterations; our approach leverages photons from

light paths that ease the process of light discovery for scenes with

complex indirect illumination, resulting in more variance reduction.

[Bako et al. 2019] is a recent deep learning approach that first

leverages an offline trained neural network for unidirectional path

guiding; yet the method can only guide the primary bounces and

produce unsatisfactory results in most testing cases. Their technique

can be effective for lowering the initial severe noise with sparse

path samples, especially on scenes with strong direct illumination.

However, such a first-bounce technique is less effective for scenes

with strong indirect illumination. Our approach extends the offline

training idea to multiple bounces and successfully models the in-

cident light field at any local regions in a scene, enabling better

rendering quality as a result.

We also compare with previous work that use parametric mixture

models (GMM in [Vorba et al. 2014] and VMM in [Ruppert et al.

2020]) to represent sampling distributions, as shown in Tab. 1, Fig. 6,

and Fig. 7. The recent work [Ruppert et al. 2020] combines the classic

tree-based spatial structure (as used in [Müller et al. 2017; Rath et al.

2020]) with efficient and flexible parametric distribution fitting tech-

niques that consider parallax awareness; this leads to reasonably

high rendering quality and outperforms other comparison methods

(and sometimes ours) on the testing scenes. Fortunately, thanks to

the effectiveness of our neural reconstruction of sampling distri-

butions, we can still achieve lower variance on many other testing

scenes. Overall, our approach can produce the state-of-the-art path

guiding results.

Equal-quality comparison. Besides the equal-time comparison, we

also compare the time spent to achieve the results of similar quality

on some challenging scenes in Fig. 8; the corresponding rendering

time (compared to our time) of each method is listed, for achieving

the same rMSE (with a threshold of 10
−4

in difference) of the full

image as our method. We can see that our method can achieve the

equal rendering quality with less rendering time in these cases.

The benefit of photons. We have demonstrated that our photon-

driven approach can achieve efficient path guiding and rendering

on various challenging testing scenes. To further demonstrate the

benefits of using photons for complex scenes, we show results of a

special/extreme case, designed to contain mostly glossy surfaces and

be illuminated by extremely narrow-band spotlights. This makes

the path samples very difficult to connect to these lights, for which

previous path-based methods [Müller et al. 2017; Rath et al. 2020;

Ruppert et al. 2020] have lower sampling quality. In contrast, emitted

photons can quickly provide valid samples for reconstruction and

our photon-driven approach thus works reasonably well.

Sampling map reconstruction. The core of our path guiding ap-

proach is a novel deep learning based sampling map reconstruction.

We show examples of our reconstructed sampling maps in Fig. 3,

compared with the reference and the reconstructions from a few

traditional image filtering and inpainting methods, including Gauss-

ian filtering, bilateral filtering, image pyramid [OpenCV 2021] and

pull-push [Gortler et al. 1996], using the same input. For each of

these techniques, we have tested different adaptive heuristics for its

parameters (e.g., standard deviation, bandwidth, number of levels)

and report the best result.

In general, given a noisy sampling map as input, traditional fil-

tering and inpainting techniques can smooth the input, but their

reconstruction quality is low due to the hard-coded kernels. In con-

trast, our neural reconstruction method can produce more accurate

sampling maps that are closer to the ground truth by allowing the

kernels to be learned from the data. In addition, our approach can

regress more accurate sampling maps, when the input uses more

iterations of photons; we show one converged example in Fig. 3 and

more sampling map reconstructions through multiple iterations in

the supplementary material. We also show the final renderings using

these traditional techniques in Fig. 11, where better reconstruction

leads to lower variance in the rendering result.

In Fig. 9, we also compare with a few reduced versions of our

approach for an ablation study. We compare with a naive neural re-

construction method using a single vanilla U-Net without the use of

our proposed architecture or multi-version inference strategy, and a

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Photon-Driven Neural Reconstruction for Path Guiding • 1:13

Fig. 10. Comparison to best-performing methods in two equal-times on a special scene where using photons is more beneficial than pure path samples. We

modify the Veach Ajar scene to have glossy surface materials and it is lit by narrow-band (1
◦
) spotlights pointing upwards to the ceiling. We show the full

images with rMSEs.

Pool (4min)

Classroom (13min)

ReferenceOursOurs-noNeural

0.0034 0.0012

0.0035 0.0008

0.0207 0.0042

0.0097 0.0025

Fig. 11. We study the effectiveness of the proposed neural reconstruction

module. We compare our full model with a downgraded version without

the neural sampling map reconstruction step. We show crops with rMSEs

given equal rendering time.

reduced variant without using the additional features (Eqn. 11).Note

that our full model leads to better rendering quality compared with

these ablated methods. To further justify the effectiveness of our

neural module, we compare with only using the noisy input sam-

pling map (without the neural reconstruction) for path guiding in

Fig. 11. This example clearly demonstrates the benefit of leveraging

the deep network in our framework. Directly using the noisy pho-

ton power histogram for sampling is not effective, since it does not

sufficiently resemble the local incident radiance.

Light path guiding extension. In this work, we leverage photons to
generate our sampling distributions. However, it is well-known that

tracing photons can sometimes be inefficient, especially when only

Kitchen Hotel

Fig. 12. The maximum resolution of our histogram map is limited by the

available memory on the machine and the neural computational cost, lead-

ing to ours being overtaken by previousmethods that leveragemorememory-

efficient representations such as quadtree ([Rath et al. 2020]) and parametric

function ([Ruppert et al. 2020]) at a later time. Our speed of convergence

slows down earlier due to such drawbacks. The average memory consump-

tion on the Kitchen and Hotel scenes is 0.62GB and 0.68GB ([Müller et al.

2017]), 0.81GB and 2.77GB ([Rath et al. 2020]), 0.69GB and 0.74GB ([Ruppert

et al. 2020]), 9.26GB and 12.38GB (Ours).

a small region of a large scene is visible to the camera, many traced

photons may never reach any valid voxels, leading to expensive pho-

ton tracing and undesirably overly-dense spatial structure. Guiding

the tracing of photons can address this issue to some extent. We

show a simple extension of photon guiding in Fig. 13, by applying

the light path guiding technique similar to [Vorba et al. 2014], which

improves the rendering quality of scenes that are difficult for the

standard photon tracing.

Limitations. The proposed approach is mainly designed for of-

fline rendering, as previous path guiding work; it accelerates the
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0.1198 0.0066

0.0748 0.0137Celling-Hole CBox

Fig. 13. Our method purely relies on local photons; therefore the photon

visibility needs to be at a reasonable level for an acceptable reconstruction

quality. Here are examples in the Kitchen scene where most emitted photons

from sunlight cannot appear inside the room and another extreme case in a

modified Cornell Box scene where many photons cannot enter the box.

The reconstructed sampling maps have lower quality when visible photons
are too sparse to rebuild the incident radiance. In contrast, it is sometimes

beneficial to guide traced photons into visually important regions via the

guided light tracing (GLT).

convergence of path tracing but still requires a moderate number

of path samples. Combining our approach with modern denoising

techniques can further reduce the number of samples (as shown in

the supplementary material). Similar to previous work [Müller et al.

2017; Rath et al. 2020] that also use spatial voxels to store local sam-

pling distributions, a structured artifact can appear in the rendered

image when photons are not dense enough (the bottom of Fig. 13).

Such artifact disappears with more photons; combining our method

with parallax-aware techniques [Ruppert et al. 2020] through warp-

ing or transformation could potentially address it more effectively

in the future, but may also expose new challenges in computational

cost of histograms over mixture lobes.

We use standard 2D images as sampling distributions for deep

CNN based reconstruction. However, this consumes more memory

than the quadtrees in [Müller et al. 2017; Rath et al. 2020] and

parametric models in [Vorba et al. 2014; Ruppert et al. 2020], and

we can only adopt low-resolution histogram maps due to limited

systemmemory. The other more compact representations can in fact

fit more detailed sampling distributions due to their adaptive nature,

although this also requires many more samples. We demonstrate

this in Fig. 12, where previous methods start to overtake ours with

a very large sampling budget (more than 10
3 ∼ 10

4
rays per pixel).

However, our approach is still effective with a moderate sampling

budget, which is often how path guiding is expected to be applied,

especially when in practice it can be effectively combined with

denoising techniques as presented in the supplementary material.

Extension to more compact directional representations is possible

as shown in a recent concurrent work [Zhu et al. 2021].

10 CONCLUSION AND FUTURE WORK

In this paper, we present a new deep learning-based photon-driven

path guiding approach. Our approach leverages photons to recon-

struct sampling distributions, which is sometimes more effective

than pure unidirectional (path-driven) methods for challenging

scenes that are dominated by indirect lighting; we propose to use a

deep neural network to regress high-quality sampling maps from

low-quality photon histograms, enabling effective path guiding as a

result. To better utilize the benefits of such neural framework, we

introduce an adaptive hierarchical grid to cache the reconstructed

sampling maps spatially in the scene, allowing for path guiding at

any bounce. The proposed approach achieves reasonably better ren-

dering results than previous state-of-the-art path-guiding methods

on many of our challenging test scenes.

We also observe some drawbacks of our image-based neural recon-

struction approach including the excessive memory usage, limited

resolution of our histogram maps, and uneven photon visibility. We

believe this work can inspire future research on searching for a

more flexible neural representation for sampling distributions and

reducing the dependency on additional GPU resources.

We take a step towards making the neural path guiding more ef-

fective, thus also opening up many appealing future directions. Our

approach leverages local photon statistics for sampling map recon-

struction; an interesting extension is to also consider some global

context and even achieve guiding in primary space (e.g., [Müller

et al. 2019; Guo et al. 2018]). In addition, our target sampling density

function can potentially be extended to advanced distributions such

as variance-aware [Rath et al. 2020] or product sampling [Herholz

et al. 2016] (avoiding the MIS, possibly by caching and reusing a

discretized BSDF representation and leveraging GPU for computing

the product) for better sampling efficiency. Combining our deep

learning based local sampling reconstruction with reinforcement

learning techniques [Huo et al. 2020] to achieve sampling with a

proper reward function could provide more benefits.

Meanwhile, we leverage heuristic criterion to achieve voxel subdi-

vision in the hierarchical grid; this spatial partitioning process could

also be potentially learned via another deep neural network in the

future. While we purely leverage photons in our method, combining

photons and path samples in a holistic neural path guiding frame-

work is an interesting future direction to explore. More importantly,

we leverage regular 2D images as sampling distributions in the neu-

ral reconstruction; this inspires combining deep learning with other

distribution representations such as hierarchical quadtrees [Müller

et al. 2017; Rath et al. 2020] and parametric mixture models [Vorba

et al. 2014; Ruppert et al. 2020] to reduce the excessive cost of GPU

resources. Zhu et al. [2021] presents an example of such extension,

although it still heavily relies on powerful GPUs.
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