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Abstract

The bidirectional reflectance distribution function (BRDF) is crit-
ical for rendering, and accurate material representation requires
data-driven reflectance models. However, isotropic BRDFs are 3D
functions, and measuring the reflectance of a flat sample can require
a million incident and outgoing direction pairs, making the use of
measured BRDFs impractical. In this paper, we address the prob-
lem of reconstructing a measured BRDF from a limited number of
samples. We present a novel mapping of the BRDF space, allowing
for extraction of descriptive principal components from measured
databases, such as the MERL BRDF database. We optimize for the
best sampling directions, and explicitly provide the optimal set of
incident and outgoing directions in the Rusinkiewicz parameteriza-
tion for n = {1, 2, 5, 10, 20} samples. Based on the principal com-
ponents, we describe a method for accurately reconstructing BRDF
data from these limited sets of samples. We validate our results
on the MERL BRDF database, including favorable comparisons to
previous sets of industry-standard sampling directions, as well as
with BRDF measurements of new flat material samples acquired
with a gantry system. As an extension, we also demonstrate how
this method can be used to find optimal sampling directions when
imaging a sphere of a homogeneous material; in this case, only two
images are often adequate for high accuracy.

CR Categories: I.4.1 [Image Processing and Computer Vi-
sion]: Digitization and Image Capture—Reflectance I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Color, shading, shadowing, and texture;
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1 Introduction

The bi-directional reflectance distribution function or
BRDF [Nicodemus et al. 1977] characterizes material ap-
pearance, representing the unique reflectance of paints, metals,
plastics, or velvet. The BRDF is a 4D quantity, depending on
incident and outgoing directions, and can be reduced to 3D under
the common assumption of isotropic reflectance. Historically, para-
metric BRDF models such as Phong [1975], Cook-Torrance [1982]
or Lafortune [1997] have been used. In the past two decades,
as the need for more realistic appearance and reproduction of
real-world materials has increased, measured or data-driven
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Figure 1: Rendering of isotropic BRDFs of unknown materials, re-
constructed with our method from only 20 measurements captured
at optimal sample locations (see Fig 10 for error plots).

BRDF models have become more popular, and databases such
as the MERL BRDF database [Matusik et al. 2003a] have been
developed. In principle, it is easy to measure the BRDF using
a gonioreflectometer (we achieve this in practice using a gantry
system with a flat material sample). However, for a dense sampling
of even 100 samples in each direction (critical for capturing sharp
highlights), one would need a million samples or images over the
full 3D isotropic BRDF. This is prohibitive in most applications,
and considerably reduces the practicality of measured BRDFs.

In this paper, we address the fundamental problem of where to sam-
ple an unknown BRDF when only a very limited number of samples
can be acquired. Our goal is to make measured reflectance practical
in computer graphics for product design, virtual reality, appearance
fabrication and entertainment, as well as in industrial quality con-
trol, where appearance must often be monitored in real-time. The
question is how best to orient n light-sources and n cameras, such
that the best impression of the appearance (BRDF) is obtained. We
base our analysis on the MERL isotropic BRDF database [Matusik
et al. 2003a], assuming that this covers the majority of real world
isotropic material variation. We demonstrate that we can recon-
struct a data-driven BRDF from a very small set of (fewer than 20)
measurements. Our specific contributions are as follows:

New BRDF Mapping: We introduce a new mapping of the
BRDF (Sec. 3) that enables a linear approach, with principal com-
ponents from the MERL BRDF database that are highly descriptive
of reflectance phenomena like diffuse and specular reflection, Fres-
nel effects and retroreflection (Fig. 3).

Optimization for Sampling Directions: We identify regions of
importance based on the condition number of subsets of rows from
the principal component matrix of the data [Ipsen and Wentworth
2014] (Sec. 4). The condition number directly relates to the qual-
ity at which one can expect to reconstruct a BRDF, with a given
set of samples known from it. Based on this, we obtain a pri-



Material n = 1 n = 2 n = 3 n = 5 n = 10 n = 20 Projection Reference

black-soft-plastic

blue-acrylic

blue-metallic-paint2

green-fabric

light-red-paint

pink-jasper

silver-metallic-paint

specular-violet-phenolic

two-layer-silver

white-fabric

white-fabric using “soft” PCs

Figure 2: Reconstructions of unknown samples (10 MERL BRDF samples not used at all for computing principal components (PCs) and
sample directions). The BRDFs are rendered as spheres, illuminated by a front-light at a direction of [1, 1, 1], and a back-light causing grazing
angle reflections at [−1,−1,−3]. Reconstructions are made with n = {1, 2, 3, 5, 10, 20} sampling points. In addition, reconstructions using
all possible sampling points are shown. This corresponds to a projection of the data into PC-space and shows the best possible reconstruction.
Finally, the far right column shows reference renderings of the true BRDFs. We see that generally 3-10 measurements are sufficient to capture
the true appearance of a material. For some diffuse materials, more samples are needed to avoid ringing at the highlights. Alternatively, as
mentioned in Sec. 8, a separate “soft” set of principal components can be used to avoid this ringing.



oritized list of light/view direction pairs, which indicates the best
directions to sample from in a point-sampling setup, when only
n samples are to be acquired. The list does not, by far, cover
all variability observable in BRDFs, but it does tell us where the
strategically best places to sample are, ensuring that the maxi-
mum possible amount of unique information is captured with ev-
ery sample. We differ from [Matusik et al. 2003b] in considering a
very small number of measurements (10-20 instead of 800-1000),
and we develop a novel optimization algorithm suited for our pur-
pose. We provide the optimal set of incident and ougoing direc-
tions in the Rusinkiewicz [1998] half-difference parameterization
for n = {1, 2, 5, 10, 20} samples (Table 1 in Sec. 6), which can
directly be used by practitioners.

BRDF Reconstruction and Validation: Inspired by the statis-
tical reconstruction methods of [Blanz et al. 2004], we propose a
similar ridge-regression based method to reconstruct full BRDFs
from this sparse set of samples (Sec. 5). This method penalizes
solutions that statistically deviate from the variability learned by
the MERL database. We validate our directions and reconstruction
method in two ways. First, we (randomly) leave out 10 materials
in the MERL BRDF database, obtaining a slightly different set of
principal components and sampling directions from the remaining
90. We then use these 10 materials as a validation set. Figure 2
shows the accuracy with increasing numbers of samples, demon-
strating that 5-10 samples is often adequate, and 20 BRDF samples
provides accurate results in all cases. Next, we consider flat sam-
ples of new real-world materials. We use n = 20 samples from
five unknown materials, and compare the reconstructions with the
densely measured in-plane reflectances of the materials (Sec. 7).

Extension to Image-Based BRDF Measurement: Our main
contribution is for BRDFs acquired from a sparse set of measure-
ments with a gonioreflectometer (in our case, a gantry setup with a
flat material sample). We also demonstrate an extension to the pop-
ular image-based BRDF measurement method (Sec. 9), that takes
2D images of spheres of homogeneous materials rather than single
measurements [Marschner et al. 2000] (and the approach used to
acquire the database [Matusik et al. 2003a]). We demonstrate that
two images are often adequate in this case (Table 2 and Fig. 12).

2 Related Work

The canonical approach to BRDF acquisition, considered here, is
to sample individual light/view directions for a flat sample using a
gonioreflectometer as done in e.g. [White et al. 1998]. As noted
above, this is slow, and a variety of alternative setups and sampling
strategies leveraging parallel acquisition of multiple BRDF samples
with a CCD camera in conjunction with known curved geometry,
mirror setups, and adaptive sampling schemes have been proposed.

Image-Based BRDF Measurement: Marschner et al. [2000]
proposed a method where a sphere of homogeneous material is im-
aged (2D set of samples) from a 1D set of lighting drections, to
obtain an isotropic 3D BRDF. Other, more complex setups, with
curved mirrors etc. have also been proposed [Ward 1992; Dana
and Wang 2004; Ghosh et al. 2007; Noll et al. 2013; Schwartz
et al. 2014]. Indeed, the approach of Marschner et al. [2000] was
used to acquire the MERL database [Matusik et al. 2003a]. How-
ever, this method is limited to spheres (or samples that can be
painted/wrapped on a sphere). In this paper, we mainly address the
canonical case of gonioreflectometric measurement for a flat sam-
ple, showing how a very sparse set of measurements suffices. We
also demonstrate an extension to image-based BRDF measurement
where two images is adequate, rather than full 1D lighting variation.

Adaptive Sampling: Fuchs et al. [2007] suggest an adaptive
sampling scheme where the observed properties of the BRDF be-
ing measured are taken into account. Here, regions needing to be
refined are detected by evaluating how well a sample is modeled
by its neighboring samples. A major limitation of this method
is that a somewhat dense grid of samples must be acquired be-
fore the refinement procedure converges well. In contrast, our
method is non-adaptive, and we use a very sparse fixed set of
(precomputed and tabulated) sampling directions for any material.
Lensch et. al. [2003] suggest a different approach, where the next
sampling direction is estimated based on an uncertainty measure of
the fitted BRDF parameters. This approach allows for full control
of the number of samples used, but in contrast to our method, it
relies on fitting a parametric model, with the resulting limitations.

Complex Environment Lighting: Some recent work has ex-
plored acquisition of simpler 2D BRDF models under environment
lighting [Romeiro et al. 2008] or even using a controlled environ-
ment [Ghosh et al. 2007; Tunwattanapong et al. 2013; Aittala et al.
2013]. These methods have shown convincing results, where dif-
ferent variants of convolutional theory are used to obtain homo-
geneous or spatially varying BRDFs. However, they require solv-
ing non-linear systems and regularization, while we focus on more
direct measurement of BRDFs from individual samples. Alterna-
tive approaches where the environment is unknown but geometry
is known have also been suggested [Romeiro and Zickler 2010];
however, the ambiguity between environment and BRDF can be
difficult to resolve, requiring various heuristics for regularization.

Rapid Reflectometry: Ren et al. [2011] propose pocket reflec-
tometry, where a reference checkerboard with known reflectance
tiles is used in conjunction with a handheld lightsource and a fixed
camera. Older work simply compares reference BRDFs to the
target-BRDF [Hertzmann and Seitz 2003]. These are somewhat
related to our proposed method in that they reconstruct appearance
based on reference BRDFs, with the difference that they are limited
by the relatively small number of reference BRDFs used and by the
need of physically placing the references in the scene.

Efficient Sampling: Closest to our work is that of Matusik et
al. [2003b], who mention that for n = 800 samples, an unknown
BRDF can be modeled by a linear combination of other BRDF
models from their dataset. Note that this is for measuring indi-
vidual BRDF samples, as in our paper, rather than for image-based
measurement. Their method is closely related to the optimum sam-
pling directions in our work. However, they do not explicitly pro-
vide which directions these 800 samples correspond to, nor investi-
gate how this quality converges. Weyrich et al. [2006] utilizes this
method to reconstruct spatially varying BRDFs of human skin, and
[Hullin et al. 2010] uses it to interpolate fluorescence measurements
for BRRDFs.

We extend the work of Matusik et al. [2003a; 2003b] by introduc-
ing a novel BRDF mapping that makes linear modeling possible
from fewer samples. Our mapping addresses the issues of non-
physical and odd-looking reconstructions, including those having
negative reflectance values. Critically, we focus on optimal min-
imal sampling with n < 20, rather than n = 800, showing that
this much smaller set suffices. We develop an optimization method
that quickly yields optimal sampling locations for small values of
n, compared to the greedy approach [Matusik et al. 2003b]. We
provide tables of the n = 20 optimal directions, that can be used
directly. We also suggest a reconstruction approach that takes into
account the statistical variability of BRDFs based on PCA, rather
than linear combinations of raw measured BRDFs. Finally we dis-
cuss the extension to capturing images of spheres, rather than clas-
sical gonioreflectometric point-sampling.



Materials Standards: In the materials industry, various stan-
dards have been proposed, and are widely used, to characterize
reflectance. For specular or glossy materials, the simplest is the
method of Hunter and Judd [1939], who simply measured the re-
flectance at 60◦ perfect reflection. An extension to this is adding
the near-normal and grazing-angle behavior by measuring the re-
flectance at 85◦ and 20◦ perfect reflection as well [Hunter 1987].
This is also known as the ASTM standard D523. Within the more
complex types of materials, such as car-paint and pearlescent col-
ors, additional information is required. Westlund and Meyer [2001]
describe that the sets of aspecular angles {15◦, 45◦, 110◦} and
{25◦, 45◦, 75◦}, both with 45◦ incident light, have been suggested
for characterizing these more complex materials. Westlund et al.
themselves utilize all five angles ({15◦, 25◦, 45◦, 75◦, 110◦}) to
obtain maximum information about the materials. We adapt these
five directions in our comparison in Sec. 6, showing that our method
provides significantly more accurate results with our five optimized
directions.

Parametric Fits: Finally, considerable effort has been devoted to
fit parametric BRDF models to real-world observations. These in-
clude both empirical ([Phong 1975; Blinn 1977; Ward 1992; Lafor-
tune et al. 1997]) and physically-based ([Torrance and Sparrow
1967; Cook and Torrance 1982]) reflectance models, and recently
also more advanced parametric BRDFs have been proposed, aiming
at reproducing the behaviors observed in MERL ([Löw et al. 2012;
Brady et al. 2014]). As all models are simplifications of the true
behavior, one has to determine what regions of a BRDF the models
should prioritize, i.e., what objective function the optimizers should
minimize. Using the L1-norm to emphasize the base of a specular
peak, rather than the extremum has been suggested, and various
transformations of the observed data have also been proposed such
as square or cubic root, logarithmic, and cosine weighting [Ngan
et al. 2005]. We leverage some of these observations, including log-
arithmic mapping and cosine-weighting in our BRDF remapping,
but also normalize by the average or a reference BRDF. Crucially,
we focus on data-driven reflectance, rather than parametric BRDF
models. It is also important to note that although parametric models
are thought of as compact, even the most simple models, such as the
Phong model, have at least 7 tunable parameters (three if ignoring
color). This calls for at least the same number of samples, but ide-
ally many more to get a robust fit. Given our sparse data, even the
number of parameters in the most simple analytical models is often
comparable to, or exceeds, the number of samples we use. In addi-
tion, our proposed method is based on solving a linear system, thus
eliminating the need for non-linear optimization and the challenge
of local minima.

3 Data and Mapping

We base our analysis on the MERL isotropic BRDF database [Ma-
tusik et al. 2003a]. This database covers 100 materials of varying
reflectance, from soft diffuse materials like rubber, to hard specu-
lar materials like chrome. The reflectance is represented by dense
BRDF measurements in a 3D volume using Rusinkiewicz half-
difference angle coordinates (θh, θd, φd) [Rusinkiewicz 1998]. The
resolution for each RGB color is (90 × 90 × 180), or 1, 458, 000
measurements. We seek to dramatically reduce the number of mea-
surement samples needed to 20 or fewer. Principal Component
Analysis (PCA) has been performed on this dataset before [Ma-
tusik et al. 2003a; Ngan et al. 2006], with the obervation that a
linear transformation on the raw BRDFs, such as PCA, is inferior
to non-linear transformations. Furthermore, Matusik et al. [2003a]
observed that linear combinations of raw BRDFs could give rise to
unrealistic results such as negative reflectance values and “holes”.

Log-Relative Mapping: The poor performance of PCA on raw
BRDF values is closely related to the high dynamic range within the
BRDF (which is several orders of magnitude), combined with the
variation clearly not following a normal distribution. This fact mo-
tivates the use of a mapping of data that preserves inter-BRDF vari-
ation while dampening intra-BRDF variation. This mapping should
at the same time also make the data more normally distributed. We
propose a novel log-relative mapping for this purpose:

ρ 7→ ln

(
ρ cosweight +ε

ρref cosweight +ε

)
, (1)

where ρ is the BRDF, ε is a small constant that avoids division by
zero and sensitivity to camera noise (we use ε = 0.001), and ρref
is a reference BRDF, relative to which the mapping is applied. In
our experiments, we choose the reference BRDF to be the median
value for each (θh, θd, φd), over the entire dataset of BRDFs. We
choose the median rather than the mean, to make the mapping more
robust towards outliers in the dataset. A cosine-weight is applied to
compensate for extreme grazing-angle values, as in previous work,

cosweight = max {cos(n · ωi) cos(n · ωo) , ε} , (2)

where n,ωi,ωo are the normal, illumination-direction, and view-
direction vectors respectively, obtained from converting a BRDF
location (θh, θd, φd) to the Cartesian coordinate frame. The refer-
ence BRDF, ρref , is shown in Fig. 3.

Note that every (θh, θd, φd) BRDF value is essentially compared
individually to a reference BRDF, and the natural logarithm is then
used to weight smaller and greater values equally (i.e., a value half
the size of the reference value should have the same magnitude as
a value twice as big as the reference).

RGB Colors as Independent BRDF Samples: It is apparent
that many (most) BRDF behaviors are covered by the database, with
materials ranging from smooth and soft, to hard and specular, with
varying Fresnel effect (refractive indices), and even retro-reflection.
It is however also apparent that not all color-variation has been cov-
ered, e.g., there is a pink specular material, but not a pink soft ma-
terial. Therefore, we choose to work in grey-scale and treat each
of the 3 color channels of the BRDFs as individual observations.
This allows us to abstract away the color, and effectively have three
times as many observations (material samples), at the cost of the
samples being a little correlated. Our algorithm then simply recon-
structs each color channel of the BRDF separately; this does not
require any additional measurements.

With 100 materials, each having 3 color-channels that are being
treated as individual grey materials, a total of m = 300 BRDFs are
available in the database. Each material can be vectorized as a point
in a p = 90 · 90 · 180 = 1, 458, 000-dimensional space. This gives
an observation matrix Y ∈ Rm×p. As mentioned above, we use
the median of the dataset as the reference BRDF, ρref ∈ Rp:

ρref,i = median
(
Y[1,i], Y[2,i], . . . , Y[m,i]

)
(3)

Using the reference BRDF, all observations (rows) in Y can be
mapped using the mapping in Equation 1, resulting in the mapped
observation matrixX:

Xj,i = mapping(Y[j,i], ρref,i). (4)

Principal Components: Up to k = m = 300 principal com-
ponents may be extracted from X by performing singular value
decomposition (SVD) of the mean-subtracted mapped observation
matrix:

(X − µ̂) = UΣV T , (5)
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Figure 3: BRDF-slices of the first 5 principal components of the MERL database, using the mapping from Equation 1. Slices are made at
φd = 90◦, and an interpretation of them is shown on the far right, adapted from [Burley 2012] . Notice how the primary variation (the first
principal component) is in the specular peak, and the second principal component primarily contributes to the diffuse region of the BRDF.
The third component contracts or widens the specular peak. The fourth component adds Fresnel-effect and finally the fifth both contributes
to Fresnel, shaping the specular peak, and a bit of retro-reflection.

Figure 4: BRDF-slices of the first 5 principal components of the
MERL database without using any mapping. Slices are made at
φd = 90◦. Due to the large dynamic variation in the raw BRDFs,
the specular direction is dominating all variation.

where µ ∈ R1×p is the mean over m rows of X, and µ̂ ∈ Rm×p
simply repeats µ for each row. The columns of V ∈ Rp×k are
eigenvectors of the covariance (X− µ̂)T (X− µ̂), and correspond
to the principal components of the data. The diagonal elements,
σ2
i , of Σ ∈ Rk×k correspond to the variance explained by the ith

principal component.

In Fig. 3, the first 5 principal components are visualized as BRDF-
slices [Burley 2012]. An interpretation reference is shown to the
far right in the figure. The slices reveal very interesting structures
of the principal components: the first principal component largely
models the intensity of the specular peak, by affecting only the re-
gion where θh is close to zero. The second principal component
models diffuse contribution allowing for either raising or lowering
the overall reflectance for all non-grazing angles. The blue band in
the third component allows for widening or contraction of the spec-
ular peak. Finally, the fourth and fifth components model various
combined effects; most notably the Fresnel effect contribution at θd
close to 90◦ and the additional shaping of the specular peak in PC5,
but also a small contribution to the retro-reflective behaviour in the
lower left corner. These informative principal components are a re-
sult of the log-mapping introduced in Equation 1. Without it, the
majority of all numerical variation is concentrated in the specular
peak, drowning all off-peak variation of the BRDFs. This is shown
in Fig. 4, where slices of the first 5 unmapped principal components
are illustrated. Although these components numerically describe
the data well, we see qualitatively that they hold little information
about the overall nature of a BRDF.

Finally, as it will later become convenient, a matrix of scaled prin-
cipal components,Q ∈ Rp×k, can be obtained by:

Q = V Σ. (6)

Here, the length of each principal component has been scaled by
the amount of variance it covers.

4 Optimization of Sampling Directions

Before introducing the optimization scheme used to determine op-
timal sampling directions, we give the general idea behind recon-

struction of BRDFs, as this is the primary driver behind the objec-
tive function used to choose the sampling directions.

Using the scaled principal components Q ∈ Rp×k obtained from
Equation 6, a new BRDF xmay be synthesized using a linear com-
bination c of the principal components (c ∈ Rk×1 is a vector):

x = Qc+ µ, (7)

and likewise, hadx been known, the linear combination of principal
components best modeling it could be found by solving the linear
system for c. The expected sensitivity to errors in this modeling
can be estimated by the condition number κ of the matrixQ:

κ(Q) =
σmax(Q)

σmin(Q)
=
σ1

σk
, (8)

which is the ratio between the maximum and minimum singular val-
ues of Q. The lower the condition number, the less the sensitivity
to noise and numerical errors [Ipsen and Wentworth 2014].

Recall that every (θh, θd, φd) location in the BRDF volume cor-
responds to a specific light/view-direction, and that every location
additionally corresponds to a row in Q. Therefore, the problem of
determining the n best directions for sampling becomes a problem
of determining the reduced matrix Q̃ ∈ Rn×k of n rows from Q,
that minimizes the condition number κ(Q̃).

Minimizing Condition Number: Matusik et al. [2003a] use a
greedy algorithm to evaluate when the condition number of Q̃ sta-
bilizes for increasing n. The strategy is to initially pick n random
rows from Q and then in a random order try to replace rows in Q̃
with random rows from Q, while only keeping the swaps that re-
duce κ(Q̃). Our experience with this approach is that it converges
very slowly for small n (see Fig. 5).

The rows of Q are formed by a vectorization of a discrete three-
dimensional volume holding values that exhibit continuous varia-
tion. This means that the rows ofQ are not uncorrelated, and more
importantly, we can estimate the gradient of a row by looking up
its neighbors in the volumetric representation. Rather than treat-
ing the rows in Q as independent and without structure, as Ma-
tusik et al.’s method does, we thus propose utilizing gradients to
more effectively minimize condition number, κ(Q̃). We found that
standard numerical optimizers have difficulties in solving this min-
imization. This is partly due to the integer steps required when
moving through the BRDF volume, and partly due to the invalid
regions existing in the BRDF volume (views below horizon). We
therefore develop our own simple algorithm. We start with a ran-
dom initialization of r ≤ n sampling points (we used r = 1).
We then randomly pick one of the points, and numerically evalu-
ate the gradient ∇κ =

(
δκ(Q̃)
δθh

, δκ(Q̃)
δθd

, δκ(Q̃)
δφd

)
, moving along this



Figure 5: Comparison of condition number for our and Matusik
et al.’s method. Blue: Condition number reached by our method
at convergence. Orange: condition number reached by Matusik
et al.’s method using the same computation time as our method.
Red: Condition number for Matusik et al.’s method using 5 times
the computation time as our method.

gradient for a pre-determined step-length. This is repeated until
convergence. After convergence if r < n we add a point and repeat
optimization. The method was not very sensitive to step-length. We
chose an initial length of 3◦ (3 cells), and reduced this to 1◦ (1 cell)
when the former step-length had converged.

Algorithm: A summary of the full algorithm to minimize condi-
tion number to choose optimal sampling directions is as follows:

1. Pick r ≤ n random sampling locations in (θh, θd, φd). For a
more robust initial guess, repeat this randomization multiple
times and choose the guess that had the lowest κ(Q̃).

2. Randomly choose one of the r points. Estimate∇κ and move
the point one step-length in this direction if the destination
is a valid location in the BRDF volume. Otherwise, clip ∇κ
accordingly. Repeat until convergence.

3. Optionally reduce step-length and repeat (2).

4. If r < n, add a new point (r++) and repeat (2).

(In the special case of n = 1, the condition number cannot be esti-
mated and instead we utilize the leverage or 2-norm of the rows in
Q̃ as suggested by [Ipsen and Wentworth 2014].)

Validation: This approach works very well for small values of
n, whereas it becomes comparable with the method of [Matusik
et al. 2003a] for very large values (beyond the scope of this paper).
Within our goals of minimal sampling, n < 20, the gains are signif-
icant as shown in Fig. 5. We use our method to find the optimum set
of n rows that minimizes κ(Q̃) and plot this (blue bar). Afterwards
we run Matusik et al.’s method for the same amount of computation
time and plot the obtained condition number (orange bar). Finally
we let Matusik et al.’s method run for 5 times the computation time
we used and plot the obtained condition number (red bar); as can
be seen, the convergence of Matusik’s method is slow, so additional
computation time does not significantly change his results. Our
condition numbers are significantly lower for 5 ≤ n ≤ 20.

To evaluate if our method does in fact converge to a global min-
imum, we first found the ground truth global minimum by brute-
force computations for n = 2, and then repeated the algorithm 50
times with different random initial conditions, plotting the result-
ing sampling locations, the minimum error sampling over all runs
(the final result of our algorithm), and the ground-truth, as shown
in Fig. 6. Red points indicate the first sampling direction and pink
points indicate the second. The blue circles indicate the best solu-
tion found and the white stars (on top of them) indicate the global
minimum found by brute force computations. The red points are

Figure 6: Optimization repeated 50 times for n = 2 sampling
directions. Red corresponds to first sampling direction, purple to
second. The blue circles indicates the best constellation found. The
two white stars indicate the ground truth global minimum found
through brute-force evaluation of all combinations (κ = 1.00008).
Our method is seen to correctly find the global minimum. Notice
that all red points are fairly well clustered around the global mini-
mum, indicating that our method converges well every time. A scat-
tering is seen over φd for the purple points; this is however related
to the fact that φd becomes ambiguous for θd → 0◦.

seen to be well clustered around the global minimum. For the pur-
ple points we observe a lot of scattering over φd; this is however
related to the fact that φd becomes ambiguous for θd → 0◦ as is
the case here. The blue circles and white stars align, showing that
we do in fact find the global minimum κ = 1.0008.

5 Reconstruction

Given a small number of samples n from an unknown BRDF, we
wish to reconstruct the missing elements of the BRDF. We do this
by projecting the known information into the PCA space, and by us-
ing the information of the principal components inQ to reconstruct
the remaining information.

Let x̃ ∈ Rn be the vector of known values of a BRDF, let µ̃ ∈ Rn
be the vector of corresponding mean values from Equation 5, and let
Q̃ ∈ Rn×k be the corresponding rows of the principal components
in Q. The linear combination of principal components, c, that best
models the observed data is then obtained by:

(x̃− µ̃) = Q̃c

c = argmin
c
‖(x̃− µ̃)− Q̃c‖2

=
(
Q̃
T
Q̃
)−1

Q̃
T
(x̃− µ̃), (9)

and the full BRDF, x ∈ Rp, is then reconstructed by using the full
principal components:

x = Qc+ µ. (10)

Finally, we can apply the inverse mapping from Equation 1 to ob-
tain the original unmapped BRDF.

Although the least squares solution above is unbiased, it usually
results in severely over-fitted results, deviating significantly from
ground truth. Blanz et al. [2004] addresses this issue using ridge
regression and we adapt this approach for BRDFs. The length of
the scaled principal components, Q, is proportional to the amount
of variance they explain. Hence, the magnitude of the elements in
c directly links to how much a fit deviates from the mean behavior,
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Figure 7: Optimal sampling directions for n = {1, 2, 5, 10, 20} samples. Each color pair corresponds to a view/illumination-combination.
Notice that for a single observation, the 60◦ constellation is the optimum. When extending to two observations, an off-peak sampling should
be performed, and continuing to 5, 10 and 20 we see that the majority of measurements should lie within the plane of incidence.

i.e., ‖c‖2 is proportional to the unlikelihood of a reconstruction.
Introducing the hyper-parameter η in conjuction with the 2-norm
of c, it is possible to favour reconstructions closer to the observed
distribution of BRDFs:

c = argmin
c
‖(x̃− µ̃)− Q̃c‖2 + η‖c‖2. (11)

This expression has the closed form solution:

c =
(
Q̃
T
Q̃+ ηI

)−1

Q̃
T
(x̃− µ̃), (12)

where I is the identity matrix. As may be seen, a value of η = 0
corresponds to the least squares solution in Equation 9, and for η →
∞, c goes to zero and the reconstruction moves towards the mean
solution µ. We have found that the method is not very sensitive
to the value of η; we use η = 40. For completeness we evaluated
the use of L1 penalized minimization (Lasso, [Tibshirani 1996]) to
obtain a sparser set of PCs, and did not observe better performance.

Finally, recall that as mentioned in Sec. 3 color information has
been removed from the training data. This means that in order
to reconstruct a colored BRDF, each color channel must be recon-
structed separately by Equations 10 and 12.

6 Results

Based on the optimization approach described in Sec. 4, we were
able to obtain a prioritized list of optimal sampling directions for
n = {1, 2, 5, 10, 20} samples, and validate the accuracy of recon-
struction using these directions for both the MERL database mate-
rials, as well as for new measured BRDFs (Sec. 7).

Optimal Sampling Directions: The optimization method was
repeated 50 times in order to verify repeatability, and to enable us
to pick the minimum condition-number solution. In Table 1, these
directions are listed for different values of n, and they are visual-
ized by colored pairs of arrows for view-illumination combinations
in Fig. 7. We emphasize that these directions can be used directly
for minimal sampling of any BRDF within a gonioreflectometer
or gantry-based setup for a flat sample; the implementer need not
re-run our optimization. We will also make the source code for re-
construction, principal components and mean values available on-
line upon publication, to directly allow application of Equations 10
and 12 for BRDF reconstruction from the sparse measured samples.

Note that the computed sampling directions lie primarily in the
plane of incidence and, for some measurements, resemble the as-
pecular directions 15◦, 25◦, 45◦, 75◦, and 100◦ reported by West-
lund and Meyer [2001] to be industry standards for measuring go-
niochromatic surfaces. Intuitively, it makes sense that the single
most important measurement is at the perfect reflection around 60◦

c.f. Fig. 7, in order to determine the intensity of the specular peak.
Likewise, for n = 2, we see that while the first measurement should

n θh[
◦] θd[

◦] φd[
◦]

1 0 66 0

2
2 40 24
29 21 52

5

1 4 36
77 13 86
8 79 85
3 74 145
13 52 80

10

3 12 28
63 19 89
5 77 77
2 60 180
15 4 130
1 6 37
2 79 110
39 76 89
0 71 104
5 75 180

n θh[
◦] θd[

◦] φd[
◦]

20

9 12 69
66 35 103
4 76 150
3 79 107

33 63 105
1 7 174

21 8 180
7 64 180
6 73 180
2 63 95

11 11 124
6 74 123
1 62 129

33 49 24
14 71 55
8 35 180

31 77 91
2 72 130
2 47 113

10 43 68

Table 1: Optimium sampling directions in Rusinkiewicz coordi-
nates [Rusinkiewicz 1998], when n BRDF samples can be acquired.

capture the specular peak, the second measurement moves far off-
peak and measures the diffuse component of the material. It is im-
portant to emphasize, as stated in the introduction, that the reported
sampling directions do not cover the full variability of BRDFs. To
fully capture a BRDF, generally thousands of samples are required
[Lensch et al. 2003]. What these results provide are the strategically
best locations to sample from in a minimal sampling setup, in or-
der to capture as much unique information as possible per sample.
Note also that these directions hold for all BRDFs, and no complex
adaptive acquisition scheme is required.

Reconstruction Quality on MERL Database: To assess the re-
construction quality, we first describe experiments on the MERL
BRDF database itself; the next section discusses validation on new
samples. To avoid overfitting, the data was randomly split into two
groups: 90 materials for training, and 10 materials for testing. The
optimization was performed again on the reduced training-dataset
and although it did not provide exactly the same directions, these
were close to what was observed for the full dataset. Hence, the 10
testing materials are completely separate from the training phase.

We first evaluate the performance of the sampling directions, by
comparing the reconstruction quality using the five industry stan-
dard directions reported by Westlund and Meyer [2001], with the
reconstruction quality using the five optimal directions we have ob-
tained. Using ours and Westlund and Meyer’s [2001] five directions
for sampling—which correspond to five known rows in x andQ—
the testing materials were reconstructed and the results compared
to the ground truth. Fig. 8 shows the root-mean-squared error of
mapped values between reconstruction and ground truth, normal-



Figure 8: RMS error of reconstruction of unknown mapped BRDFs
normalized by mean mapped BRDF value, using (blue) our 5 best
points of sampling, (red) 5 common industry directions [Westlund
and Meyer 2001], and (dashed) all values of the BRDF. For com-
parison we also fitted the Ward parametric model to our 5 samples
(purple), and also evaluated the average of 20 reconstructions us-
ing 5 random directions (green). Each material is represented by 3
datapoints for its R, G, and B errors.

Figure 9: Normalized average reconstruction error of unknown
samples versus number of sampling directions used.

ized by the mean mapped BRDF value, for three different recon-
structions: using our five directions; using the five directions of
Westlund and Meyer [2001]; using all directions (x̃ = x), which
is a projection of the data into PCA space and is the lower limit
for the error. In addition, Fig. 8 also shows the (much higher) error
of the parametric Ward model fitted to our five sampling directions
(purple), as well as the average error of 20 runs where five purely
random sampling directions were used. It is apparent that our pro-
posed five directions outperform the industry sampling directions
in reconstruction quality by up to an order of magnitude, and have
very low error.

An evaluation of reconstruction error for an increasing number of
sampling points is shown in the blue curve in Fig. 9 (the red curve
for sphere sampling corresponds to Sec. 9). The figure shows the
average normalized root-mean-squared error of reconstruction for
the 10 testing materials, using a range of 1 to 20 sampling direc-
tions. Note that already at 4-5 samples the average error is starting
to stabilize. The long tail following indicates that whereas the first
samples yield great improvements to the reconstruction, latter sam-
ples only improve it slowly.

In Fig. 2, reconstructions of the 10 testing materials for an increas-
ing number samples, n = {1, 2, 3, 5, 10, 20}, are shown. The ren-
derings of spheres with the respective materials are done using a
front light at a direction of [1, 1, 1] and a back-light causing graz-
ing angle reflections from a direction of [−1,−1,−3]. In addition
to the low-number sampling directions, projections into PC space
are also shown. These are made by fitting the principal components
to the full BRDFs and illustrate the best possible reconstructions
obtainable by the PCs. Finally, in the last column, reference ren-
derings of the materials are shown. In accordance with Fig. 9, it

is observed that the reconstructions stabilize after n = 5 samples,
and at n = 20 there are no noticeable visual differences between
the reconstruction and the reference. A single outlier is the “white-
fabric” material, where the method has difficulties capturing the
diffuse appearance of the material due to the strong specular prior
in the data. This is addressed in Sec. 8 and a better reconstruction
is shown in the last row of the figure.

In the supplementary material, we also report results on all 100 ma-
terials (without separating training and testing data) for complete-
ness, with comparable results.

7 Validation on New Materials

To validate the reconstruction method with real data, beyond what
is found in the MERL database, the in-plane BRDF of five flat
samples of new materials was densely sampled using a spherical
gantry. The materials evaluated were: a glossy blue book, a brown-
red notebook with a smooth highlight, a specular binder-cover, a
diffuse piece of green cloth, and a diffuse piece of yellow paper.
We considered the BRDF at a single spatial location, the center of
the sample. Note that diffuse materials are not purely Lambertian.
Reference images of the five samples are shown in the lower right
corners in Fig. 10. The in-plane BRDF profiles were densely sam-
pled for all materials with a 1◦ resolution using a 45◦ incident light.
In addition, the BRDF at the best 20 sampling directions, listed in
Table 1, were also acquired, in order to apply our method to recon-
struct the full 3D isotropic BRDF.

Using our proposed reconstruction method from Equation 12, we
reconstruct the full BRDFs, using the best n = 20 samples. In the
left column of Fig. 10, the measured in-plane BRDF values are plot-
ted as solid curves for red, green, and blue channels. The in-plane
reflectances, extracted from the full reconstructed BRDFs are plot-
ted as dashed curves. Note that these plots are 1-D curves extracted
from the full 3D BRDF volumes and as such are only very small
fractions of all the data that has been reconstructed. In general,
there is a very good match, indicating accurate BRDF reproduction
on real samples.

The most significant deviations are observed in the 3rd reconstruc-
tion, the binder-cover, and the 4th reconstruction, the green cloth.
For the binder-cover, the diffuse component remains constant much
longer than what has been learned from the data as being “natural”.
This is most likely caused by a very isotropic subsurface scatter-
ing in the material. For the green cloth, a retroreflective behavior is
observed at the incident light direction. Although retroreflective be-
havior is represented by a few samples in the MERL database, it is
not enough to match the retroreflectivity of the cloth using the first
20 principal components. Note that overall appearance of materials
is reproduced well, with very few BRDF measurements.

Renderings of the materials using the same rendering setup as in
Fig. 2 are shown in the top right corners of Fig. 10. In addition,
renderings of the materials using more complex geometry (Killeroo
model) and high dynamic range environment lighting (Grace Cathe-
dral, [Debevec 1998]) are in Fig. 1. Color variations are due to the
different colors in the environment lighting.

8 Refinement

During reconstructions we noticed that for diffuse materials, a ring-
ing sometimes appeared around the specular peak. This ringing
is caused by the bias towards specular materials in the MERL
database. This bias is not only due to a predominance of specu-
lar materials, but also due to the numerical magnitude that specular
peaks have. A simple way of addressing this ringing, if needed, is



Figure 10: Reconstruction of BRDF from five unknown materials:
A glossy dark-blue book, a soft-specular notebook, a binder-cover,
a piece of green cloth, and a piece of yellow paper. Lower right:
reference photos of the measured materials. Upper right: render-
ings of reconstructed BRDFs with a front light at [1, 1, 1] and a back
light at [−1,−1,−3]. Left: Comparison between the measured in-
plane BRDF values (solid) and the reconstructed in-plane BRDF
values (dashed). Incident light is at 45◦ (marked as solid vertical
line) and perfect reflection at 135◦ (marked with dashed vertical
line). Note that these plots represent a single curve extracted from
the fully reconstructed 3D BRDF volume.

n 1 2 5
θd[

◦] 5 4 70 4 10 31 68 75

Table 2: Optimal sampling directions in Rusinkiewicz coordinates
[Rusinkiewicz 1998], when n images are acquired by imaging a
sphere. For each acquired image, all combinations of (θh, φd) are
captured. Thus, only θd needs to be varied.

splitting up the database into “soft” and “specular” materials, and
using the respective principal components Qsoft, and Qspecular to
reconstruct a material. Determining if a material is specular is eas-
ily done by inspecting the magnitude of the ratio between an in-
peak sample and an out-of-peak sample. This refinement procedure
is not strictly needed, but does in some cases improve reconstruc-
tions. An example of this is shown in the two bottom rows of Fig. 2.
Here, the reconstruction of the diffuse “white-fabric” BRDF has in-
troduced a ringing around the specular highlight, and even at 20
samples the ringing persists. By using “soft” PCs the artifact is ef-
fectively removed, producing convincing results with as few as 3
BRDF measurements.

9 Extension to Image-Based BRDF Capture

An effective way of capturing multiple BRDF samples per image is
from spheres of a homogeneous material [Marschner et al. 2000].
This is how the extensive MERL database was captured [Matusik
et al. 2003b], and is an approach that is often used today. This of
course puts a constraint on the types of BRDFs possible to capture,
as not all materials can be cut or molded into perfect spheres.

For any angle θd ≤ 90◦ between camera and lightsource, an im-
age of a perfect sphere covers all surface normal orientations in the
positive hemisphere. An interesting observation is that an image of
an illuminated sphere (with θd ≤ 90◦) actually corresponds to a
2D slice of the 3D Rusinkiewicz coordinate frame (θh, φd) at θd.
Hence, to capture the full 3D isotropic BRDF, only a sweep over
θd must be made. This leads to a natural extension of our work,
namely in determining the best n slices through the BRDF-volume,
corresponding to the best n angles between camera and illumina-
tion when capturing a BRDF from an image of a spherical material.

We modify the optimization algorithm in Sec. 4. Where a mea-
surement in the point-sampling setup corresponds to a single lo-
cation in the BRDF volume and a single row in Q, a measure-
ment in a spherical-sampling setup corresponds to many rows in
Q. For a given angle θd, let L(θd) be the set of BRDF locations,
(θh, θd, φd), visible on the sphere. Q̃ will now include the set of
rows inQ corresponding to L(θd) for each of the n measurements.
In this case, the condition number κ depends only on the θd values,
so that ∇κ = δκ(Q̃)

δθd
. Using the new Q̃ and ∇κ, the optimization

in Sec. 4 is again used to find the optimal sampling directions θd.

Our results are presented in Table 2 and visualized in Fig. 11. It is
seen that the single most important sample is of the oblique angle
reflection of the material (low θd). The second most important sam-
ple is the grazing angle reflection (high θd). For additional samples,
we observe a spreading over all angles, but with a predominance at
low and high values of θd.

As with the point-sampling setup, we qualitatively evaluate the re-
constructions of the 10 test materials. The results are shown in
Fig. 12 for n = {1, 2, 5} sampling directions. After only two im-
ages, appearance is accurately captured for all materials. A quanti-
tative analysis (red error graph in Fig. 9) confirms this, and shows
that almost optimal reconstruction is achieved with 5 images. In
agreement with Table 2, the first image captures the correct oblique
angle appearance (first column of Fig. 12) and the second image
captures the correct grazing angle appearance (second column). We
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Figure 11: Optimal sampling directions for spheres with n =
{1, 2, 5} images. Black arrows denote the direction to the cam-
era. Orange arrows denote the direction to the light-source (due to
reciprocity these may be interchanged). Notice that θd is the angle
to the half-vector; the angle between view and light is 2θd.

also performed a comparison to randomly chosen sampling direc-
tions. Intuitively, with more samples available from an image, the
difference in error should be lower than for point sampling. We ob-
serve that random sampling results in roughly 35% higher errors for
up to n = 5, after which it converges, approaching our error, again
indicating again that 5 images are sufficient for reconstruction.

For a final validation we used the Cornell Reflectance database [Foo
1997] to simulate additional θd slices completely uncorrelated with
the MERL data. These are shown in the last 3 rows.

10 Conclusions and Future Work

In this paper, we have developed a method for optimal, minimal
sampling of BRDFs. Perhaps surprisingly, we show that n = 20
individual measurements is adequate in most cases for accurate
isotropic BRDF reconstuction, and n = 2 images suffices for
image-based BRDF measurements of spherical samples.

Our method leverages the MERL database [Matusik et al. 2003a],
and proposes a novel mapping of BRDFs, allowing extraction of
very descriptive principal components. A reconstruction approach
based on ridge-regression, that utilizes the learned principal com-
ponents, is described. We believe we are the first to present a BRDF
reconstruction method that utilizes the statistical likelihood of a
synthesized BRDF through the magnitude of the eigenvalue-scaled
principal components. This approach yields better reconstructions
than previous methods, and may have broader applicability.

We also develop a method for determining the regions of greatest
importance, to sample the BRDFs. We provide an explicit table of
the strategically best n = {1, 2, 5, 10, 20} directions for sampling
any unknown BRDF, and validate our results against previous in-
dustry standard sets of directions, as well as with measurements on
new BRDFs not in the MERL database. We also show how the ap-
proach can be extended to sampling spheres via image-based BRDF
measurement. In that case, two images often suffice.

In the future, the approach could also be extended to other ac-
quisition geometries and customized for a particular gantry setup
and near-field views of a homogeneous flat sample, where multiple
light-view directions are available in a single image. Another inter-
esting extension is to allow for capturing spatially varying BRDFs,
since most gonioreflectometers are equipped with cameras. Our
prioritized lists could also be used for importance sampling general
BRDFs for rendering. The descriptive principal components may
also be useful in editing and synthesizing novel BRDFs. In sum-
mary, we believe our results take an important step towards making
rapid acquisition of data-driven reflectance models more practical
in many applications.

Learned principal components, lists for n = [1, 50] sampling direc-
tions, sample code, and reconstructed BRDFs, can be downloaded
from our website: http://brdf.compute.dtu.dk.

Material n = 1 n = 2 n = 5 Reference

black-soft-plastic

blue-acrylic

blue-metallic-paint2

green-fabric

light-red-paint

pink-jasper

silver-metallic-paint

specular-violet-phenolic

two-layer-silver

white-fabric

cayman [Cornell]

garnet-red [Cornell]

krylon-blue [Cornell]

Figure 12: Reconstructions of test samples, simulating BRDF cap-
ture using a sphere [Marschner et al. 2000]. The BRDFs are
rendered as spheres, illuminated by a front light at a direction
of [1, 1, 1], and a back light causing grazing angle reflections at
[−1,−1,−3]. Reconstructions are made with n = {1, 2, 5} sam-
pling directions. The far right column shows reference renderings
of the true BRDFs. We see that two measurements (images) are suf-
ficient to capture the true appearance of a material. The bottom 3
rows show materials from the Cornell Database [Foo 1997].
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