
Interactive Rendering of Caustics using Interpolated Warped Volumes

Manfred Ernst
University of Erlangen

Tomas Akenine-M̈oller
Lund University

Henrik Wann Jensen
UC San Diego

Abstract
In this paper we present an improved technique for inter-
active rendering of caustics using programmable graphics
hardware. Previous real-time methods have used simple
prisms for the caustic volumes and a constant intensity
approximation at the receiver. Our approach uses inter-
polated caustic volumes to render smooth high-quality
caustics. We have derived a simple formula for evalu-
ating the density of wave-fronts along a caustic ray, and
we have developed a precise method for rendering caustic
volumes bounded by bilinear patches. The new optimiza-
tions are well suited for programmable graphics hardware
and our results demonstrate interactive rendering of caus-
tics from refracting and reflecting surfaces as well as vol-
ume caustics. In contrast to previous work, our method
renders high quality caustics generated by specular sur-
faces with much fewer polygons.

Figure 1: A metallic ring on a wooden floor creates the classic cardioid-shaped caustics, rendered at 512 × 512
pixels with 2× 64× 8 triangles on the ring. From left to right: a) the full scene rendered using our new algorithm,
b) closeup of algorithm using constant intensity across caustic triangles (62 fps from the view in the leftmost
image), c) closeup of our algorithm using interpolation (47 fps without any precomputation from the view in the
leftmost image), d) closeup of the reference image computed using photon mapping with one million photons
(130 seconds).

Key words: Caustics, caustic volumes, volume caustics,
real-time rendering, graphics hardware.

1 Introduction

Caustics are beautiful and complex patterns of light gen-
erated by specular to diffuse light transport. Examples in-
clude the shimmering light at the bottom of a swimming
pool and light focused through a glass of wine onto a ta-
ble. There are several techniques for rendering caustics in

high-quality offline rendering systems, but only a limited
set of techniques for real-time rendering of caustics are
available. This means that caustics are rarely included in
applications such as games.

In this paper we present a new technique for interactive
rendering of smoothly interpolated caustics using pro-
grammable graphics hardware. Our method is based on
caustic volumes [19, 13] as shown in Figure 2. We ren-
der these caustic volumes using programmable graphics
hardware similar to approaches for real-time shadow ren-
dering that uses the shadow volumes algorithm [5]. Our
contributions are summarized below:

• Fast and simple interpolation of the light intensity
over each caustic triangle to avoid blocky appear-
ance.

• The use of warped caustic volumes as shown in Fig-
ure 2, which is significantly more accurate than the
prisms used in previous work.

• Fast analytic computation for volume caustics in ho-
mogeneous participating media.

• An algorithm formulated for the standard pro-
grammable feed-forward rasterization architecture
with many optimizations that makes for high per-
formance.

These key properties are illustrated in Figure 1.

specular triangles

caustic triangles

light

Figure 2: Three different cases of caustic volumes. From
left to right: caustic volumes that are diverging, converg-
ing, and warped, where the sides clearly are not planar.

2 Previous Work

Rendering of caustics has been an active area of research
in graphics for roughly 20 years. Early work concentrated
on rendering complex caustic patterns, while recent work
has focused on faster rendering.

Work based on ray tracing was started in 1986, when
Arvo [1] presented backwards ray tracing as the first prac-
tical technique for rendering caustics. His method traced
rays “backwards” from the light sources into the scene
storing information about the caustics in texture maps.
Collins [4] introduced an improved backwards ray tracing
technique, which tracks the wavefront [12] of the caustic
rays. This method gives higher accuracy, but is limited to
planar diffuse receivers. Jensen [10] uses photon tracing
(similar concept as backwards ray tracing) and stores the
caustics in a caustics photon map — the photon map can
render caustics on arbitrary geometry with non-diffuse
materials. The photon mapping algorithm has been ex-
tended to handle participating media and effects such as
volume caustics [11]. Recently, Guenther et al. [6] use a
cluster of 18 dual Athlon PCs to render caustics at 10–
20 frames per second with photon mapping. Wyman et
al. [20] use a shared-memory machine with 32 CPUs to-
gether with precomputation in order to obtain real-time
rendering of caustics. Due to the precomputation phase,
a limited set of scene configurations can be rendered in
real time. Purcell et al. [14] use graphics hardware to
render images with caustics using the photon map algo-
rithm. They use the graphics hardware to implement a
breadth-first stochastic ray tracer. A scene similar to our
ring scene takes about 8 seconds to render.

Heckbert and Hanrahan [7] introduced the concept of
beam tracing, and this concept was used by Watt [19] in a
two-pass algorithm capable of rendering caustics. In the
first pass, a beam of light is created for each water surface
polygon, and for each receiver it hits, a pointer is stored to
the water surface polygon. The projected polygon of the
beam where it hits the receiver is called acaustic polygon.
In the second rendering pass, the intensity of the caustic
polygon is proportional to the area of the water surface

polygon divided by the area of the caustic polygon.
Shinya et al. [15] present pencil tracing, where a pencil

is a set of rays in the vicinity of a given axial ray. This
work can be seen as an extension of beam tracing [7]
in the sense that it handles refractions more accurately,
and also provides error tolerance analysis in an elegant
manner. However, it is not targeted for use with graphics
hardware.

Nishita and Nakamae present a sophisticated shading
model for rendering the optical effects within water [13].
In contrast to Watt [19], they also take into account the
volumetric effects, and can thus render volumetric caus-
tics. For each scanline, their rendering process finds the
intersected volumes, and accumulates their results into an
accumulation buffer. Homogeneous participating media
can be handled. Iwasaki et al. [8] present an algorithm
that implements Nishita and Nakamae’s techniques us-
ing graphics hardware. Since they use a constant inten-
sity across caustic triangles, they have to use large water
surface meshes (512 × 512 vertices) to avoid blocky ap-
pearance of the caustics, which makes performance suf-
fer. Also, they do not handle warped caustic volumes, as
shown to the right in Figure 2. However, they can account
for a homogeneous participating media, which makes for
beautiful images of volumetric caustics.

Iwasaki et al. [9] present a technique, based on Nishita
and Nakamae’s algorithm, that can render reflective and
refractive caustics using graphics hardware. Their algo-
rithm is a volume rendering technique, where receiver ob-
jects are sliced by several planes, and caustics rendered
on each of these. The rendering quality increases with
the number of slicing planes. This algorithm cannot han-
dle participating media and does not use warped caustic
volumes. Furthermore, no interpolation over caustic tri-
angles is used. Frame rates of 2.5–10 images per second
are reported for water meshes of64 × 64 to 128 × 128
vertices.

The methods that use caustic polygons and assume
uniform intensity across each caustic polygon all require
a finely tessellated specular surface, and have problems
when the curvature of the specular surface is high. This
issue was addressed by Brière and Poulin [2] by a su-
perior approach that tracks the wavefront of each ray of
the volume and uses barycentric interpolation over each
caustic triangle. This avoids the blocky appearance of
the techniques presented above. Their algorithm is tar-
geted for ray tracing, and rendering times of minutes up
to many hours are reported. In our work, a simpler and
faster interpolation scheme over each caustic triangle is
used.

Stam [16] renders approximate textures of underwater
caustics on a plane using wave theory. Trendall and Stew-

art [17] show that general calculations can be performed
using the graphics hardware of 2000. Their test applica-
tion is that of refractive caustics on the bottom plane of a
pool of water. This work is important in the sense that it
considered the graphics hardware as a general tool for dif-
ferent calculations. Neither of these two techniques gen-
eralize to arbitrary receivers. Wand and Strasser [18] take
a completely different approach by placing sample points
on the specular surfaces, and then treating each sample
point as a camera that projects an image of the incom-
ing light onto diffuse receivers. They take into account
local curvature to decrease antialiasing, and can use high
dynamic range images as lights. The number of passes
of this algorithm is directly proportional to the number
of sample points on the specular surfaces, and in the pre-
sented images, undersampling problems are visible.

Neither of the algorithms above is capable of render-
ing caustics onto arbitrary receivers at interactive frame
rates using only a single PC with a graphics card with-
out a blocky appearance or noise in the caustics. In the
following, we present an algorithm based on caustic vol-
umes that addresses these issues.

3 Caustics Algorithm

The geometry in the scene is separated intogenerators
and receivers. Generators are objects with a specular
component in their BRDF, while receivers always have a
diffuse component. Glossy effects are neglected for caus-
tic computations. An object may be both a generator and
a receiver.

Rendering caustics using a caustic volume approach
can be carried out according to a simple algorithm:

foreach visible point P on a receiver
foreach caustic volume V
if P is inside V
Compute & accumulate caustic intensity

Various hierarchical data structures have been pro-
posed to reduce the number of point-in-volume tests for
CPU based rendering. However, GPUs perform best
when executing highly optimized brute-force algorithms,
and we use a highly optimized inner loop rather than a
hierarchical method to obtain real-time performance.

Simplifying assumptions about the geometry of the
caustic volumes are often made to reduce the compu-
tational cost. Artifacts and the inability to render self-
intersecting volumes are the price for this speedup. Our
method computes exact point-in-volume tests efficiently,
and it is not limited to GPU implementations.

Without loss of generality, we will outline the algo-
rithm for a scene with one refractive generator (e.g. a
water surface) and one light source in order to simplify

the description. The implementation works with an arbi-
trary number of reflective/refractive generators and mul-
tiple lights. All geometry is stored as indexed triangle
sets. Caustic volumes are computed by the CPU for every
frame. Therefore, we can handle fully dynamic scenes.
At each vertexvi of the generator, the vector from the
light source tovi is refracted at the surface using the ver-
tex normalni. Refracted vectorsri are stored in an array,
similar to vertices and normals. Each triangle∆jkl con-
sisting of verticesvj , vk andvl generates a caustic vol-
ume bounded by the raysvj + trj , vk + trk andvl + trl,
wheret ≥ 0.

Our algorithm works like this: In a first pass, the world
space positions of the receivers are rendered to a texture
using a simple fragment program. Because of this, re-
ceiver geometry can be arbitrary. It need only be possible
to render it with OpenGL/DirectX. In the second pass, the
crucial operation is to draw a bounding volume for each
caustic volume. Using the positions from the texture,
point-in-volume tests are computed for every visited pixel
by a fragment shader. For points inside the volume, caus-
tic intensity is computed and accumulated in the frame
buffer. The accumulation is achieved by simple additive
blending. Intensity calculation and point-in-volume tests
need some more detailed explanation.

The following section lists the limitations of our algo-
rithm, and then follows the details of our warped caustic
volumes. In Section 3.3, we describe our method for test-
ing whether a point,p, is inside such a volume. For points
inside a volume, we compute its intensity as described in
Section 3.4 as well as volumetric effects in the presence
of participating media (Section 3.5).

3.1 Limitations
The limitations of our algorithm are summarized in the
following list:

• Only a single specular bounce

• No shadowing for caustics

• Generators must be triangular meshes

• It must be possible to render receivers into the Z-
buffer

• Reflected/Refracted vectors are linearly interpolated
over specular triangles

3.2 Warped Caustic Volumes
Previous algorithms for rendering caustics with caustic
volumes using graphics hardware have all assumed that
the volumes are prisms, that is, with planar side surfaces.
However, due to different normals at the vertices of a

Figure 3: a) An example of a warped caustic volume.
b) The two-dimensional coordinate system in which our
caustic volumes are represented.

specular triangle, this is in general not true. An exam-
ple of this is shown to the left in Figure 3.

The side surfaces of a caustic volume are defined by
the three vertices,vi, i ∈ [0, 1, 2], of the specular tri-
angle, and the reflected/refracted vectors,ri, associated
with each vertex. Assuming a finite caustic, the exact
same side surfaces could each be defined by four possi-
bly non-planar points; two from the specular triangle, and
two from the bottom of the caustic volume. Such a sur-
face is the simplest of bilinear patches. Our assumption
here is that the reflected/refracted vectors when traveling
from one vertex,vi, to another,vj , can be created by lin-
early interpolatingri into rj . In terms of the generated
side surfaces, this is an approximation in the case of re-
fraction, but it is much more precise than the use of planar
side surfaces.

For a point,p, inside a caustic volume, we need to find
the area of the caustic triangle ofp. The choice of the
plane used to find the caustic triangle is arbitrary as long
as it passes throughp. Intersecting a plane with a bilinear
patch results, in general, in a quadratic curve. Thus the
“caustic triangle” would have curved edges. However,
by choosing the normal of that plane to the same as the
normal of the specular triangle, i.e., the two triangles are
parallel, we are guaranteed that the caustic triangle will
have straight edges. This is the approach we take for our
computations.

To simplify the shader optimizations presented in Sec-
tion 4, we change the coordinate system so that they-axis
coincides with the normal of the specular triangle’s plane,
and so that they-coordinates of thevi are all set to zero.
Furthermore, the directionsri are scaled so that they-
components are set to one, i.e.,ri

y = 1. This is illustrated
to the right in Figure 3.

In Figure 4, we show the differences between using
triangulated volumes and using warped volumes.

Figure 4: Caustics from a section of an ocean surface with
64 × 64 points rendered at 256 × 256 pixels. The left
image was rendered with triangulated prisms as bound-
ing volumes. Gaps between adjacent prisms result in
clearly visible artifacts. The right image was rendered
with tightly fitting bounding volumes and our exact point
in volume test.

3.3 Point-in-Volume Test
The point-in-volume test is the performance hot-spot of
the algorithm, since this is executed for every pixel cov-
ered by the bounding volume of each caustic volume.
Thus, thorough optimization is crucial for real-time per-
formance. The basic idea to test if a pointp in world
space is inside of a volumeV is simple. First,p is trans-
formed into the local coordinate system ofV , yielding
p′. All subsequent computations are carried out in the
local coordinate system. The verticesc0, c1 andc2 of
the caustic triangle∆c are computed by intersecting the
caustic rays with a virtual plane with normaln = (0, 1, 0)
containingp′ (see Figure 3 to the right). Any point-
in-triangle test can now be used to check ifp′ is in-
side∆c. We apply a test that computes three valuesβi

proportional to the barycentric coordinates, because they
are needed for linear interpolation later on. The actual
barycentric coordinates could be computed fromβi by
division by the area of the∆c. Below, we show how the
unnormalizedβi can be computed, and then we describe
some optimizations.

α = p′y

ci = vi + αri, i ∈ [0, 1, 2]
ei = p′ − ci, i ∈ [0, 1, 2]
β0 = |e1 × e2|
β1 = |e2 × e0|
β2 = |e0 × e1|

The pointp′ is insideV if all βi have the same sign.
A significant performance gain can be achieved, when

the point-in-triangle test is done in two dimensions, us-
ing a projection of the involved points onto a plane. The
ratios of the barycentric coordinates are invariant under

this transformation. We choose to project along the local
y-axis, since that will give numerically stable results.

Due to the code above, allci andp′ lie in the same
plane,y = α, which means that they-component of allei

will be zero. Thus, the computations of theβis simplify
to:

β0 =|e1×e2|= p′x(c2
z−c1

z) + p′z(c
1
x−c2

x) + c1
zc

2
x − c1

xc2
z

β1 =|e2×e0|= p′x(c0
z−c2

z) + p′z(c
2
x−c0

x) + c2
zc

0
x − c2

xc0
z

β2 =|e0×e1|= p′x(c1
z−c0

z) + p′z(c
0
x−c1

x) + c0
zc

1
x − c0

xc1
z

To test whether a point is inside a caustic volume, a frag-
ment shader computes theβ’s as shown above, and tests
whether allβ’s have the same sign. If this is the case, the
point is inside. The comparison is further optimized in
Section 4.2.

3.4 Caustics Interpolation
In order to avoid the blocky appearance of caustics, we
interpolate the intensities inside the caustic triangles. Do-
ing linear interpolation requires the computation of inten-
sity values per vertex, as opposed to computing a single
value for an entire caustic triangle. For this purpose, we
considered a wavefront based method [2], but decided to
use a simpler and more efficient function to calculate the
intensity at a given depth,α, inside a caustic volume. It
is suited for both an optimized hardware implementation
and linear interpolation. The area of the caustic triangle
A(∆c) is defined as1:

A(∆c) = |(c1 − c0)× (c2 − c0)|

To simplify notation, we introduce a set of new vectors:

ki = vi − v0, li = ri − r0, i ∈ [1, 2]

Note thatki
y = liy = 0. We can rewrite the area func-

tion as a function of the depth,α, along they-axis in the
coordinate system from Figure 3 as:

A(α) = |(k1 + αl1)× (k2 + αl2)| = a + αb + α2c

where thetriangle area coefficientsa, b andc are defined
as:

a = k1
zk2

x − k1
xk2

z ,

b = k1
z l2x − k1

xl2z + l1zk
2
x − l1xk2

z ,

c = l1zl
2
x − l1xl2z .

Thea, b andc can be precomputed and sent to the frag-
ment program as texture coordinates. For our hardware
implementation, we rewrite the function as a dot product:

A(α) = (1, α2, α) · (a, c, b)
1Actually, this is twice the area, but we always compute ratios of

triangle areas, and so these terms cancel.

If all caustic volumes are described in the same coordi-
nate system, interpolation could be done as follows. For
every vertexvi of a generator, the triangle fan around
this vertex is used to compute an area function for the
vertex. Then triangles aroundvi are denoted∆j , j ∈
[1, 2, . . . , n]. The area coefficients for a vertexvi could
be computed by just summing up the triangle area coeffi-
cients,aj , bj , cj of then triangles aroundvi:

ai =
n∑

j=1

aj , bi =
n∑

j=1

bj , ci =
n∑

j=1

cj ,

Note thatA(∆j) = Aj(0) = aj , so ai is the sum of
the areas of the triangle fans around vertexvi. A per
vertex caustic intensityIi for vi at depthα is computed
using the areaai of the triangle fan aroundvi and the
areaAi(α) of the caustic fan:

Ai(α) = ai + αbi + α2ci,

Ii = ai/Ai(α).

whereai, bi, andci are computed for each vertex by the
CPU. An interpolated intensityI at the pointp′ in a caus-
tic volume, defined by the verticesv0, v1 andv2, is com-
puted using the non-normalized barycentric coordinates
βi, i ∈ [0, 1, 2]:

I =
β0a0 + β1a1 + β2a2

β0A0(α) + β1A1(α) + β2A2(α)

The problem with this approach is that caustic vol-
umes, in general, need not share a common coordinate
system. Fortunately, we can enforce this condition lo-
cally, by flattening the fan around vertexvi for the com-
putation of the coefficients. For this purpose, the localy-
axis is chosen to be the vertex normalni. All vertices in
the fan are projected along their reflected/refracted vec-
tors into a plane with normalni containingvi. This trans-
formation is depicted in Figure 5.

The transformation is still problematic because the
point p would have to be transformed into three differ-
ent coordinate systems to compute the three vertex in-
tensities. For a real-time system, this is a costly opera-
tion. However, it can be avoided when area coefficients
are computed for every vertex of every triangle and not
for every point in the mesh. The fan is then flattened
to a plane with the geometric normal of the specular tri-
angle. In this way, the coordinate system for the fan is
the same as the coordinate system of the caustic volume.
They-coordinate ofp′ can be used for both the point-in-
volume test and the intensity calculation. Exactly howI
is computed using the GPU is described in Section 4.

0

specular
triangles v0v0

n0

flattening

Figure 5: Flattening of triangle fan around vertex v0 with
normal n0, shown in two dimensions. Note that this flat-
tening is only used in order to compute the area function
coefficients, and that the side surfaces of the volumes re-
main intact.

3.5 Volumetric Caustics

Scattering in participating media is described by the ra-
diative transport equation [3], which relates the change in
radiance along a direction in a medium to the loss due to
extinction and the gain due to inscattered light. We will
consider only homogeneous media in the following. This
means that we can use a simple analytical evaluation of
the scattering contribution due to a caustic beam [11]:

Le(~ω) = e−σtdee−σtds∆xσsp(~ω · ~ω′)Li(~ω′),

whereLe is the radiance seen at the eye,σt is the extinc-
tion coefficient,σs is the scattering coefficient,de andds

are the distances in the medium of the eye ray and the
caustic beam,p is the phase function of the medium,Li

is the incident radiance of the caustic beam, and∆x is
the distance that the eye ray passes through the caustic
beam. In the following we will describe how we compute
de, ds, and∆x—the remaining values are parameters for
the participating medium.

We draw a bounding volume for each caustic volume
and execute a fragment program for each visited pixel,
computing the intersection of the scan plane with the
three caustic rays. In general the resulting triangle has
curved edges, but we assume that it is linear in the case
of volumetric caustics. This approximation works well
as the error for the accumulated volumetric effect is neg-
ligible and does not result in any gaps between adjacent
volumes. It should be noted that we still use the more
precise computations for geometric receivers. The entry
point pn and the exit pointpf into the volume are com-
puted by intersecting the triangle edges with the eye ray
in the scan plane. Thus,∆x is the distance betweenpn

andpf . de andds are the distances from(pn + pf)/2 to
the eye point and the specular triangle, respectively.

4 Implementation and Optimizations

In this section, our optimizations of the implementation
will be described.

4.1 Vertical SIMD on GPUs
SIMD computations can be separated into horizontal and
vertical computation models. Let the size of the SIMD
registers be three, for example. In a horizontal model, a
set of three vectors would be stored in registers like this:

v0 =(v0
x, v0

y, v0
z), v1 =(v1

x, v1
y, v1

z), v2 =(v2
x, v2

y, v2
z)

In a vertical model, allx, y andz components are stored
together in registers. This leads to the following data lay-
out:

vx = (v0
x, v1

x, v2
x), vy = (v0

y, v1
y, v2

y), vz = (v0
z , v1

z , v2
z)

While this layout seems unnatural, it can be much more
efficient, because the values in one register all have the
samemeaning. The same computations are applied to
all three vectors in parallel. However, it can be tricky to
always find three such vectors.

GPU computations are usually carried out in horizontal
mode, while SIMD code for CPUs is arranged in vertical
mode for optimal performance. We have applied vertical
SIMD computations to the GPU with great success. This
is due to the fact, that most computations operate only on
thex andz components of the vectors. Such calculations
can be expressed without any overhead of the unneces-
saryy-components in vertical mode.

Computation of theβ-values in vertical mode looks
like this in Cg:

float3 p = texRECT(pTex, wPos.xy).xyz;

// Transform p to local space here ...

float alpha = p.y;

float3 cx = alpha * rx.xyz + vx.xyz;

float3 cz = alpha * rz.xyz + vz.xyz;

float3 beta = p.x * (cz.zxy - cz.yzx)

+ p.z * (cx.yzx - cx.zxy)

+ cz.yzx * cx.zxy

- cx.yzx * cz.zxy;

The texture containing receiver world space positions
is bound to parameterpTex. The x and z coordinates
of the specular triangle verticesvx, vz and the refraction
vectors (rx, rz) are passed in as texture coordinates. Re-
member that they-components of the refraction vectors
are normalized to one and that they-coordinates of the
specular triangle vertices are zero.

4.2 Shader Optimizations
Shading language compilers usually fail to generate opti-
mal assembly code. Optimization of the output is benefi-
cial in most cases. Simplification of boolean expressions

and usage of special instructions are most problematic.
We will describe two important optimizations here, that
result in a performance improvement of 20%.

A point p is inside the volume if allβi ≥ 0,∀i ∈
[0, 1, 2] or βi ≤ 0,∀i ∈ [0, 1, 2]. When we ignore2 the
case where one or twoβ-values are zero and the remain-
ing are negative, the test can be reduced from nine as-
sembly instructions to three. Theβ-vector is compared
componentwise to a zero vector. A dot product of the re-
sulting boolean vector with a vector, containing all ones,
gives the number ofβ-values greater or equal to zero. If
this value is either one or two, the tested point is not in
the volume and the fragment can be discarded. Pseudo
assembly code for this test is given below:

SGER TEMP, BETA, {0,0,0,0}; // >=0

DP3H TEMP.x, TEMP, {1,1,1}; // dot prod

SEQHC HC, TEMP.xxxx, {1, 2, 1, 2};

KIL GT; // kill fragment if outside

The computation of the caustic intensity requires a vec-
tor m = (1, (p′y)2, p′y). Compiler output uses three in-
structions to generate this vector. Using theDST instruc-
tion, it can be computed efficiently with a single instruc-
tion:

DSTH M, P.yyyy, P.yyyy;

4.3 Bounding Prisms
For each caustic volume, a screen-size quad could be ren-
dered and the point-in-volume test be executed for every
pixel. This would be extremely slow, and in our first
implementation, we instead rasterized an axis-aligned
bounding box for each volume. However, the tighter
bounding volume, the fewer point-in-volume tests need
to be executed. In this section, we describe how a tight
bounding prism can be computed for a caustic volume.
This prism is then rasterized, and the fragment shader is
executed for each visited pixel.

Recall that the vertices of the specular triangle arevi,
and for all practical applications, the volume need also be
of finite length. So, assume that the vertices of the “bot-
tom triangle” of the volume are denotedbi. The specular
triangle will be the top of the triangular prism, and a tight
plane which contains an edge will be computed for each
edge of the specular triangle. Such a plane is computed
as follows.

Assume, that we want to compute a plane for the edge
v0v1. Three planes,ni · x + di = 0, i ∈ [0, 1, 2] can be
computed as:

ni = (v1 − v0)× (bi − v0), di = −ni · v0.

Ensure that the plane normal points outwards from the
volume by flipping sign ofni anddi if the point v2 is

2We have not experienced any visual artifacts due to this optimiza-
tion.

Figure 6: To the left a caustic volume is illustrated, and
to the right its corresponding bounding prism is shown.

Figure 7: An ocean surface with 64× 64 points rendered
at 512× 512 pixels. The left image was rendered at 10.7
fps with our technique without interpolation, and the right
image was rendered at 8.9 fps using interpolation. As can
be seen, the quality is substantially improved with our
interpolation scheme.

in the positive half space of the plane. The plane that
holds the entire caustic volume in its negative half space
is the plane that we need to build our prism. For such a
plane, the following must hold:ni · bk + di ≤ 0, for
all k ∈ [0, 1, 2]. Note that all three planes must be tested
since the volume can be self-intersecting (converging).

Once a plane has been found for each of the edges of
the specular triangle, the ray of each vertex is computed
as the intersection of the adjacent edges’ plane equations.
Finally, a bottom triangle is found by making certain that
all bi are inside the volume.

An example is shown in Figure 6. Notice that the
bounding prism always is much tighter than using an
axis-aligned bounding box. We have observed a speedup
of about2× because of this.

5 Results

In all our test results, we have used a PC with an AMD
Dual Athlon MP 1800 (though only one CPU was used),
and a GeForce 6800 GT. In Figure 7, caustics from an
ocean surface are shown when viewed from above. No-
tice in particular the quality improvement using our inter-
polation scheme.

For the ring scene, shown in Figure 1, we achieve a

Figure 8: Zoomed-in renderings of the cardioid caustic generated by a reflective ring. The first three images from left to
right show renderings with increasing generator resolution (1024, 4096 and 16384 triangles) but without interpolation.
In the last image, our new interpolation technique was used with a resolution of 1024 triangles. To clearly see the
artifacts in the third and fourth image, zoom in the pdf.

frame rate of about 47 fps. Static generators require al-
most no CPU computations. With dynamic generator ge-
ometry, the CPU consumes 15% of the rendering time for
the computation of caustic rays and area function coeffi-
cients. To achieve similar image quality with no interpo-
lation, the resolution of the ring needed to be increased
by a factor of 16, which made the frame rate drop to 15
fps. Thus, the similar image quality can be obtained with-
out interpolation by increasing the resolution. However,
our interpolated version runs about3× faster, and also
continues to look reasonable even when you zoom in on
the caustics. This is not the case for the non-interpolated
version. Zooming in on the caustic is further explored in
Figure 8.

In Figure 9 all effects using our algorithm are shown.
This includes caustics on the bottom and in a homoge-
neous participating media. We have also added disper-
sion by using slightly different refraction indices for R,
G, and B, and rendered one pass per color. CPU time for
updating the dynamic ocean generator is 5% of the total
rendering time per frame.

A discoball is generating volumetric caustics in Fig-
ure 10. Each quadrilateral on the sphere generator uses
the normal of the quadrilateral to generate reflection vec-
tors from the light source. This is another example that
shows that our algorithm can handle arbitrary receiving
geometry.

In Figure 11 we demonstrate the advantage of our
algorithm in the case of high curvature generators and
receivers. Without interpolation the caustics look very
blocky, while they are perfectly smooth with the new
technique.

6 Conclusion and Future Work

We have presented a technique for rapidly rendering
caustics using programmable graphics hardware. We
avoid the blocky artifacts of previous techniques by us-

ing interpolation of the caustic intensity for each caustic
triangle. We also presented a fast method for simulating
volumetric caustics in homogeneous participating media,
and finally we presented a number of optimizations that
take advantage of programmable graphics hardware. Our
current algorithm takes into account only one specular-to-
diffuse bounce. More specular bounces could be included
using the techniques presented by Brière and Poulin [2],
but this would probably require some non-trivial clipping
of the volumes.

For future work, we would like to add shadow mapping
as an approximation to shadows in the caustics, since cur-
rently occlusion is not handled in our framework. We
would also like to implement the entire creation of the
caustic volumes in a vertex shader. Also, it would be in-
teresting to investigate whether our interpolation scheme
could be used in other rendering systems, e.g., ray tracing
based algorithms.

Acknowledgements

Thanks to Marc Stamminger and Günther Greiner for ini-
tiating Manfred’s visit at UCSD, and to Craig Donner for
the water surface generation code. Manfred was funded
by Bavaria California Technology Center. Tomas was
supported by the Hans Werthén foundation, Carl Tryg-
gers foundation, Ernhold Lundströms foundation, and the
Swedish Foundation for Strategic Research. Henrik was
supported by a Sloan Fellowship and the National Sci-
ence Foundation under Grant No. 0305399.

References

[1] James Arvo. Backward Ray Tracing. InDevel-
opments in Ray Tracing, SIGGRAPH ‘86 Course
Notes, August 1986.

[2] Normand Brìere and Pierre Poulin. Adaptive Rep-
resentation of Specular Light Flux. InGraphics In-
terface, pages 127–136, May 2000.

Figure 9: Two images of volumetric caustics from a 128×128 ocean surface. The bottom image has a more pronounced
bottom surface, i.e., receiver). Notice that these images have been rendered with a slight dispersion effect as well at
0.2 fps at 1280× 500 pixels.

[3] S. Chandrasekhar.Radiative Transfer. Oxford Uni-
versity Press, 1960.

[4] S. Collins. Adaptive Splatting for Specular to Dif-
fuse Light Transport. InFifth Eurographics Work-
shop on Rendering, pages 119–135, June 1994.

[5] Franklin C. Crow. Shadow Algorithms for Com-
puter Graphics. InComputer Graphics (SIG-
GRAPH 77), pages 242–248. ACM Press, 1977.

[6] Johannes Guenther, Ingo Wald, and Philipp
Slusallek. Realtime Caustics using Distributed Pho-
ton Mapping. InEurographic Symposium on Ren-
dering, pages 111–121, 2004.

[7] Paul S. Heckbert and Pat Hanrahan. Beam Tracing
Polygonal Objects. InComputer Graphics (SIG-
GRAPH 84), pages 119–127. ACM Press, 1984.

[8] K. Iwasaki, Y. Dobashi, and T. Nishita. An Efficient
Method for Rendering Underwater Optical Effects
Using Graphics Hardware.Computer Graphics Fo-
rum, 21(4):701–712, 2002.

[9] K. Iwasaki, Y. Dobashi, and T. Nishita. A Fast Ren-
dering Method for Refractive and Reflective Caus-
tics Due to Water Surfaces. InEUROGRAPHICS
2003, pages 283–291. Eurographics, 2003.

[10] Henrik Wann Jensen. Global Illumination using
Photon Maps. InProceedings of the 7th Eurograph-
ics Workshop on Rendering, pages 21–30. Euro-
graphics, 1996.

[11] Henrik Wann Jensen and Per H. Christensen. Effi-
cient Simulation of Light Transport in Scences with
Participating Media using Photon Maps. InCom-

Figure 10: A discoball in a Cornell-box-like room.

Figure 11: Caustics of a sphere with smooth surface nor-
mals at the ceiling of a Cornell-box-like room. Top: caus-
tics with no interpolation. Bottom: smoothly interpolated
caustics with our new method.

puter Graphics (SIGGRAPH 98), pages 311–320.
ACM Press, 1998.

[12] Don Mitchell and Pat Hanrahan. Illumination from
Curved Reflectors. InComputer Graphics (SIG-
GRAPH 92), pages 283–291. ACM Press, 1992.

[13] Tomoyuki Nishita and Eihachiro Nakamae. Method

of Displaying Optical Effects within Water using
Accumulation Buffer. InComputer Graphics (SIG-
GRAPH 94), pages 373–379. ACM Press, 1994.

[14] Timothy J. Purcell, Craig Donner, Mike Cam-
marano, Henrik Wann Jensen, and Pat Hanrahan.
Photon Mapping on Programmable Graphics Hard-
ware. InGraphics hardware, pages 41–50. Euro-
graphics Association, 2003.

[15] Mikio Shinya, Tokiichiro Takahashi, and Seiichiro
Naito. Principles and Applications of Pencil Trac-
ing. In Computer Graphics (SIGGRAPH 87), vol-
ume 21, pages 45–54, July 1987.

[16] Jos Stam. Random Caustics: Wave Theory and Nat-
ural Textures. InACM SIGGRAPH Visual Proceed-
ings, page 151, 1996.

[17] Chris Trendall and A. James Stewart. General Cal-
culations using Graphics Hardware, with Applica-
tions to Interactive Caustics. InEurographics Work-
shop on Rendering, pages 287–298, June 2000.

[18] M. Wand and W. Strasser. Real-Time Caustics.
Computer Graphics Forum, 22(3):611–611, 2003.

[19] Mark Watt. Light-Water Interaction using Back-
ward Beam Tracing. InComputer Graphics (SIG-
GRAPH 90), pages 377–385. ACM Press, 1990.

[20] Chris Wyman, Charles Hansen, and Peter Shirley.
Interactive Caustics Using Local Precomputed Irra-
diance. InProceedings of the 2004 Pacific Con-
ference on Computer Graphics and Applications,
pages 143–151, 2004.

	Introduction
	Previous Work
	Caustics Algorithm
	Limitations
	Warped Caustic Volumes
	Point-in-Volume Test
	Caustics Interpolation
	Volumetric Caustics

	Implementation and Optimizations
	Vertical SIMD on GPUs
	Shader Optimizations
	Bounding Prisms

	Results
	Conclusion and Future Work

