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Abstract
In this paper we present the first practical method for importance sampling functions represented as spherical
harmonics (SH). Given a spherical probability density function (PDF) represented as a vector of SH coefficients,
our method warps an input point set to match the target PDF using hierarchical sample warping. Our approach is
efficient and produces high quality sample distributions. As a by-product of the sampling procedure we produce a
multi-resolution representation of the density function as either a spherical mip-map or Haar wavelet. By exploiting
this implicit conversion we can extend the method to distribute samples according to the product of an SH function
with a spherical mip-map or Haar wavelet. This generalization has immediate applicability in rendering, e.g.,
importance sampling the product of a BRDF and an environment map where the lighting is stored as a single
high-resolution wavelet and the BRDF is represented in spherical harmonics. Since spherical harmonics can be
efficiently rotated, this product can be computed on-the-fly even if the BRDF is stored in local-space. Our sampling
approach generates over 6 million samples per second while significantly reducing precomputation time and storage
requirements compared to previous techniques.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Raytracing—Numerical
Analysis [G.1.2]: Approximation—Probability and Statistics [G.3]: Probabilistic algorithms (including Monte
Carlo)—

1. Introduction
Spherical harmonics are a frequency-space basis for repre-
senting functions defined over the sphere. They have been
studied extensively and have widespread applicability to
many physical problems ranging from atomic electron config-
urations in physical chemistry, to the representation of gravi-
tational and magnetic fields of planetary bodies in geodesy.
They also appear in quantum mechanics as the solutions of
the Schrödinger equation in spherical coordinates.

In computer graphics many quantities are naturally defined
over the spherical or hemispherical domain, making spherical
harmonics a natural basis for these computations. Further-
more, spherical harmonics have many convenient properties
which lead to efficient implementations for convolutions, ro-
tations, and double product integrals. Consequently, spherical
harmonics have found recent popularity in computer graphics
in the area of precomputed radiance transfer (PRT) tech-
niques [SKS02, KSS02] and have also been used heavily in
related domains such as radiative transfer [Cha60] for some
time. We refer the reader to recent surveys [Slo08, Gre03] for
an in-depth introduction to available techniques.

Another class of basis functions which are often used in
computer graphics are wavelets. Whereas spherical harmon-
ics decompose functions into independent frequency bands,
wavelets hierarchically decompose functions into compo-
nents which are localized in both frequency and space. Due to
their simplicity, Haar wavelets have received much attention
in computer graphics research. Haar wavelets have been suc-
cessfully applied to PRT [NRH03, NRH04, LSSS04, SM06]
and radiosity computation [GSCH93]. Furthermore, Haar
wavelets support efficient sampling using a simple hierarchi-
cal warping technique [CJAMJ05].

Generating samples according to the intensity distribution
of a function is a useful operation in many disciplines. In
Monte Carlo techniques, this takes the form of importance
sampling and can be used to significantly reduce variance
in numerical integration. Importance sampling techniques
also have widespread use outside of Monte Carlo rendering.
They can be used in non-photorealistic rendering, artificial
stippling, and procedural geometry placement. It is often
beneficial to also enforce certain quality measures [Coo86,
Mit91,Shi91a] on the resulting sample distribution in order
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Figure 1: In this paper we present a method for importance sampling spherical harmonic functions such as the BRDF on the left. Our technique
can also be combined with wavelets to importance sample the product of a spherical harmonic function and a Haar wavelet function (right).

to reduce variance further or simply to obtain more visually-
pleasing distributions.

Haar wavelets and spherical harmonics share many of the
same strengths. Haar wavelets can more efficiently approxi-
mate high-frequency functions; however, they do not support
efficient rotations and may produce distracting aliasing arti-
facts. Spherical harmonics, on the other hand, support effi-
cient rotation and are efficient for representing low-frequency
functions. Spherical harmonics do not suffer from the same
aliasing artifacts as Haar wavelets but instead exhibit error
in the form of "ringing". To date, however, we are unaware
of any efficient technique for importance sampling spherical
harmonics. In this paper, we address this limitations by pre-
senting a number of techniques which bridge the gap between
the capabilities of spherical harmonics and Haar wavelets.

Contributions. The first contribution of this paper is a high-
quality importance sampling technique for spherical harmon-
ics. We draw inspiration from hierarchical wavelet impor-
tance sampling [CJAMJ05] and develop a novel memory
efficient sampling approach for spherical harmonics which
requires little or no precomputation. We bridge the gap be-
tween spherical harmonics and Haar wavelets by showing
how this new sampling scheme can be used to sample the
product of a spherical harmonic function and a Haar wavelet
function. This product can be evaluated efficiently on-the-fly
and allows for high-frequency content in one function and
efficient rotation of the other. Such a situation is common in
computer graphics when, for example, convolving a smooth
BRDF with a high frequency environment map (see Figure 1).

In summary, we present the following novel contributions:

• An importance sampling technique for spherical harmonic
functions.
• An analytic conversion between spherical harmonics and

spherical mip-maps/Haar wavelets.
• A practical method for sampling the product of spherical

harmonics and Haar wavelets.

2. Related Work
A significant amount of work has been invested in efficient
sampling techniques for computer graphics. We briefly sum-
marize the most relevant work and focus on importance sam-
pling in the context of rendering.

BSDF Sampling. A commonly used technique for increas-
ing the efficiency of ray tracing based algorithms is to im-
portance sample the reflected rays based on the scattering
function. Several important BRDF models can be directly
importance sampled, including the Phong model [Shi91b],
the Ward model [War92], the Lafortune model [LFTG97],
and many others [AS00,PH04]. Complex BRDF models such
as the Torrance-Sparrow [TS67] and Cook-Torrance [CT82]
models cannot be analytically inverted and require numerical
approximations. However, parametric models which are di-
rectly invertible, such as the Ward, Lafortune, and half-way
vector disk BRDFs [EBJ∗06] have been successfully used
to approximate complex measured BRDF data [MPBM03].
Several other researchers have addressed the problem of im-
portance sampling measured BRDFs [Lal97, CPB03, CBP04,
MPBM03, Mat03, LRR04]. Though spherical harmonics can
be used to efficiently represent low frequency BRDFs and
indirect lighting [KGPB05], previous researchers have been
unsuccessful at using this representation directly for impor-
tance sampling.

In radiative transfer within participating media, phase func-
tion are generally smooth and commonly represented using
spherical harmonics. Unfortunately, since spherical harmon-
ics do not support importance sampling, most techniques rely
on simpler, analytically invertible phase functions for render-
ing. Many natural phase functions are circularly symmetric
and contain prominent forward and backward scattering com-
ponents. Our approach is particularly well-suited for such 1D
zonal functions since it gains further efficiency when using
only the zonal subset of spherical harmonics.

Environment Map Sampling. Several techniques have been
developed for sampling complex distant lighting by placing
pre-integrated direction lights at the brightest locations in
environment maps [CD01, ARBJ03, KK03, ODJ04, PH04].
These methods work well within diffuse scenes but be-
come increasingly inefficient on glossy and specular surfaces.
Cabral [CMS87] and Ramamoorthi and Hanrahan [RH02]
addressed this issue by using spherical harmonics to pre-filter
the environment map according to the BRDF. However, since
efficient sampling techniques were not available for spherical
harmonics, these methods could not account for occlusions
from other objects. Our importance sampling scheme directly
addresses this limitation of spherical harmonics.
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Product Sampling. Approaches have also been developed
which try to use information about both the BRDF and the
lighting in the sampling process. Multiple importance sam-
pling [VG95] can be used to combine several sampling strate-
gies. More recently, approaches have been developed which
try to distribute samples according to the product of the light-
ing and the BRDF. The simplest techniques first draw sam-
ples according to one of the terms and then adjust these
samples to match the product distribution. This can be done
using importance resampling [TCE05], or by rejection sam-
pling [BGH05]; however, these become inefficient if the two
functions have peaks in different directions. Furthermore,
none of these techniques can preserve stratification.

Clarberg et al. [CJAMJ05] developed a wavelet impor-
tance sampling approach which can directly generate samples
according to the product of two or more functions. They in-
troduced a novel sampling procedure which hierarchically
warps a uniform input point set to match the wavelet prod-
uct. Since warping is performed hierarchically and in small
increments, stratification properties of the input set are pre-
served in the output distribution. Unfortunately, since the two
functions need to lie in the same coordinate system, either a
large set of pre-rotated copies or pre-computed wavelet rota-
tion matrices [WNLH06] needs to be stored. Due to memory
constraints, this limits the method to relatively low resolu-
tion lighting and may still require hours of precomputation.
Recent work has tried to address this limitation by either
heuristically splitting the environment map based on peaks
in the BRDF [CETC06] or by constructing a wavelet approx-
imation of the BRDF on-the-fly [CAM08]. Our importance
sampling scheme relies on the same sample warping pro-
cedure to efficiently produce high quality distributions for
spherical harmonics. It can also be applied to product sam-
pling and addresses the limitations of wavelet importance
sampling by relying on efficient rotations in the spherical
harmonic domain. This makes it the first technique that seam-
lessly combines and exploits the complementary properties
of spherical harmonics and Haar wavelets.

Subr and Arvo [SA07] developed an algorithm for im-
portance sampling the product of distant environment map
lighting with an orientable clamped-cosine lobe. They create
a triangulated representation of the environment map and
store the illumination premultiplied by each of the first nine
spherical harmonic basis functions at every vertex. This forms
a steerable basis where the clamped-cosine can be efficiently
rotated to any orientation. Sampling this triangulation is done
using an approach much like Clarberg et al.’s [CJAMJ05]
hierarchical sample warping. Though similar, our approach
has several advantages to their method. First, Subr and Arvo
only considered a circularly symmetric cosine lobe, which
they approximate using order 3 spherical harmonics. Our
importance sampling technique works for arbitrary spherical
harmonic functions of any order. Though generalizing their
approach to higher orders is possible, since a full 2D envi-
ronment triangulation must be stored for each additional SH

Figure 2: Visualizations of the first 9 spherical harmonic basis func-
tions in Cartesian and spherical coordinates, where green indicates
positive values and red is negative.

basis, memory usage becomes an issue. Our method, on the
other hand, requires no additional storage if importance sam-
pling a single SH function and only utilizes a 1D mipmap per
SH basis for product sampling. Furthermore, our approach
can exploit the fast wavelet product to multiply two functions
on-the-fly, while their method requires a fixed, premultiplied
environment map.

3. Background
Since our importance sampling approach relies on both spher-
ical harmonics and hierarchical sample warping, we first pro-
vide a brief introduction to these two topics. In the subsequent
sections, we describe our importance sampling approach by
building on these definitions.

3.1. Spherical Harmonics
Definition. Spherical harmonics are a frequency-space ba-
sis for representing functions defined over the sphere. If we
represent a direction vector ~ω using the standard spherical pa-
rameterization, ~ω = (x,y,z) = (sinθcosφ,sinθsinφ,cosθ) ,
then the real-valued spherical harmonic basis functions are
defined as:

ym
l (θ,φ) =

{
Km

l P|m|l (cosθ)cos(|m|φ) if m≥ 0,

Km
l P|m|l (cosθ) sin(|m|φ) if m < 0,

(1)

where Pm
l are the associated Legendre polynomials and Km

l
are normalization constants.

The basis functions are indexed according to two integer
constants, the order or band, l, and the degree, m. These
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Figure 3: To perform hierarchical sample warping, we start with a uniform set of points (a) and integrate the SH basis functions (b) to obtain the
quadrant probabilities (c). The point set is first partitioned vertically according to the marginal row probabilities (d) and then each row is divided
horizontally according to the probabilities of its cells (e). The whole process repeats on the four quadrants recursively.

satisfy the constraint that l is a nonnegative integer and −l ≤
m ≤ l. The basis functions can be visually arranged into a
pyramid of increasing order as shown in Figure 2. Often it is
convenient to reformulate the indexing scheme to use a single
parameter i = l(l +1)+m, which flattens the pyramid using
a level-order traversal.

Properties and Operations. With spherical harmonics, any
real-valued spherical function f (~ω) may be approximated as
f̃ (~ω), by using a linear combination of SH basis functions:

f (~ω)≈ f̃ (~ω) =
n−1

∑
l=0

l

∑
m=−l

ym
l (~ω) f m

l , (2)

The coefficients f m
l are computed by projecting f onto each

basis function ym
l .

Spherical harmonics are orthonormal and rotation invari-
ant, allowing for efficient, alias-free least-squares projection
and reconstruction of spherical functions. These properties
lead to a number of efficient operations for computing rota-
tions [CIGR99, IR96, PH07], convolutions, and double prod-
uct integrals, all in the SH domain. Spherical harmonics also
have a number of other useful properties which are well stud-
ied in the literature [MS67].

Limitations. Though spherical harmonics are a natural basis
for many problems in computer graphics, they unfortunately
do not currently support an effective importance sampling
procedure. We address this gap in previous work and draw
inspiration for our method from the hierarchical sample warp-
ing technique for importance sampling Haar wavelets.

3.2. Hierarchical Sample Warping
In 2D, both mip-maps and Haar wavelets can be seen as a
quad-tree hierarchy of coefficients. In a mip-map, each tree
node (past the root) points to 4 children and contains exactly
4 scaling coefficients, while in a Haar wavelet each node
points to 4 children but contains at most 3 detail coefficients.
If we traverse either type of tree in top-down order, at each
node we can extract the average value within the four child

regions. This observation is responsible for the efficient hi-
erarchical sample warping scheme developed by Clarberg et
al. [CJAMJ05]. This technique warps an initially uniform set
of points by first computing the marginal probability of inten-
sity in the top and bottom half of the node. The input point
set is split according to this ratio and scaled to fit within the
two halves. This process is repeated independently on each
of the two rows, and the whole process repeats hierarchically
on the 4 children. It is easy to generalize this procedure to
mip-maps or wavelets in any dimension. We illustrate this
process in Figure 3. For simplicity we will use the mip-map
basis in our subsequent discussion, but a Haar basis could
easily be used instead.

4. Approach
The key insight behind our approach is that we can apply
hierarchical sample warping to an SH function f̃ as long as we
have a suitable mapping onto the sphere and can compute the
average value, or integral, of f̃ at each level in the traversal.
The second observation, which makes this idea practical,
recognizes that since any SH function is a weighted sum of
basis functions ym

l , the integral of f̃ over any region ΩR is
simply the weighted sum of integrated basis functions ŷm

l :Z
ΩR

f̃ (~ω) d~ω =
Z

ΩR

(
n−1

∑
l=0

l

∑
m=−l

f m
l ym

l (~ω)

)
d~ω,

=
n−1

∑
l=0

l

∑
m=−l

f m
l

Z
ΩR

ym
l (~ω) d~ω︸ ︷︷ ︸

ŷm
l

. (3)

Equation 3 says that if we have access to a collection
of pre-integrated basis functions ŷm

l then we can apply hi-
erarchical sample warping to any arbitrary SH function by
performing a weighted sum with its projection coefficients. A
naive application of this concept could be to create a 2D mip-
map or Haar wavelet representation of each basis function
in a pre-process and then perform a weighted sum of these
hierarchical representations on-the-fly to perform warping.
This works quite well, but we can do significantly better by
exploiting the structure of the basis functions.
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Figure 4: Spherical harmonics (top) are separable into a θ-dependent
component (middle) and a φ-dependent component (bottom).

4.1. Computing Basis Function Integrals
If we use a standard spherical mapping, the average value of
a basis function ym

l over a mip-map node is proportional to
the following integral in spherical coordinates:

ŷm
l =

ZZ
ym

l (θ,φ)sinθ dθdφ. (4)

This expression can be simplified by observing that the SH
basis functions are separable. This can be expressed as:

ym
l (θ,φ) = Km

l P|m|l (cosθ) Φ
m(φ), (5)

where,

Φ
m(φ) =

{
cos(mφ) if m≥ 0,

sin(|m|φ) if m < 0,
(6)

and is illustrated in Figure 4. We can therefore transform
the two-dimensional integral in Equation 4 into two one-
dimensional integrals:

ŷm
l =

ZZ
Km

l P|m|l (cosθ)Φ
m(φ)sinθ dθdφ,

= Km
l

(Z
P|m|l (cosθ)sinθ dθ

)(Z
Φ

m(φ) dφ

)
. (7)

The first term is simply a normalization constant. We describe
how to compute the two integrals in the following sections.

4.1.1. Integrals of Associated Legendre Functions
The middle term in Equation 7 involves computing the inte-
gral of an expression containing two trigonometric functions

and an associated Legendre function. Solving this integral
directly is difficult. We can however simplify the problem by
performing a change of variables to cylindrical coordinates
and observing that,Z θ+

θ−
P|m|l (cosθ)sinθ dθ =

Z z+

z−
P|m|l (z) dz = P̂|m|l , (8)

where z = cosθ, z− = cos(θ−), and z+ = cos(θ+). We there-
fore need a method to compute the integral of the associated
Legendre functions, P̂|m|l .

Since associated Legendre functions are just polynomials
in z we could symbolically integrate them using a computer
algebra system such as Maple or MATLAB and hardcode
these functions up to a sufficiently large order. A similar
approach was taken by Mousa et al. [MCA06] for integrating
the spherical harmonics over a spherical triangle. Though this
approach is exact, it does have a few drawbacks. Firstly, a set
of hardcoded functions requires a predetermined maximum
number of bands in the SH approximation. This may be
sufficient for some applications, but reduces the generality
of the approach. More importantly, in our application, when
evaluating the integral of an SH function using Equation 3
we need to compute the integrals of all basis functions up to
some band n, which is very inefficient with this method.

A more efficient approach is to derive recurrence relations
which compute the integral P̂|m|l directly from the integrals
at lower values of l and m. Two such methods have been
independently developed in the geodesy field [Pau78,DiD82].
We use the approach by DiDonato since it is more efficient
and compact. This involves two recurrence relations. The first
is a recurrence on l:

P̂m
l =

(l−2)(l−1+m)
(l +1)(l−m)

P̂m
l−2

− 2l−1
(l +1)(l−m)

(1− z2)Pm
l−1(z)

∣∣∣∣z+

z−
, (9)

which is valid for 0≤ m < l. When m = l−1, the first term
above drops out since P̂l−1

l−2 is implicitly zero. This relation
has a singularity when m = l, so we use a second recurrence
for this case:

P̂l
l =

1
l +1

[
l(2l−3)(2l−1)P̂l−2

l−2 + zPl
l (z)
∣∣∣z+

z−

]
. (10)

To start the recurrence we can use:

P̂0
0 = z+− z−, (11)

P̂0
1 =

z2
+− z2

−
2

, (12)

P̂1
1 =

1
2

[
z
√

1− z2 + sin−1(z)
]∣∣∣z+

z−
. (13)

These two recurrence relations are numerically robust and
are linear in the total number of basis functions (which is
n2 for all basis functions up to order n). In contrast, sym-
bolic evaluation is quadratic in the number of basis functions
and can suffer from catastrophic floating-point cancellation
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Algorithm 1: ASSOCLEGENDREINTEGRAL(n, Pa, Pb, a, b)
Data: n is the number of bands to evaluate.
Data: Pa[l,m] is an array of all associated Legendre functions evaluated at a.
Data: Pb[l,m] is an array of all associated Legendre functions evaluated at b.
Data: [a,b) is the integration interval.
Result: P̂[l,m] is a array of integral results, evaluated for l ≥ 0 and 0≤ m≤ l.
// Evaluate Equation 11:

P̂[0,0] = b− a;1
if n≡ 1 then2

return;3

// Evaluate Equations 12 and 13:

P̂[1,0] = b2−a2
2 ;4

P̂[1,1] =
1

2

(
b
√

1− b2 + asin(b)− a
√

1− a2 + asin(a)
)

;5
for l = 2 to n− 1 do6

for m = 0 to l− 2 do7
// Evaluate Equation 9:

g(x) := (2l− 1)(1− x2)Px[l− 1,m];8

P̂[l,m] = (l−2)(l−1+m)P̂[l−2,m]−g(b)+g(a)
(l+1)(l−m) ;9

// Evaluate special case of Equation 9:

P̂[l, l− 1] = 2l−1
l+1

(
(1− a2)Pa[l− 1, l− 1]− (1− b2)Pb[l− 1, l− 1]

)
;10

// Evaluate Equation 10:

P̂[l, l] = 1
l+1

(
l(2l− 3)(2l− 1)P̂[l− 2, l− 2] + bPb[l, l]− aPa[l, l]

)
;11

return;12

when implemented naïvely. We provide pseudo-code for this
recurrence procedure in Algorithm 1.

4.1.2. Integral Along Polar Direction
The last term in Equation 7 is trivial to compute since it is
the integral of a trigonometric function:

Φ̂
m(φ) =

Z
Φ

m(φ) dφ =
1
m

{
sin(mφ) if m≥ 0,

cos(mφ) if m < 0.
(14)

This can be evaluated directly; however, to compute integrals
for all basis functions up to some band n, this requires O(n)
calls to expensive trigonometric functions. We can make
this more efficient by using the following multiple-angle
recurrence relations:

sin(mφ) = 2sin((m−1)φ)cos(φ)− sin((m−2)φ), (15)

cos(mφ) = 2cos((m−1)φ)cos(φ)− cos((m−2)φ). (16)

This recurrence can be initialized with:

m = 0 : cos(0) = 1, sin(0) = 0,

m = 1 : cos(φ) = cos(φ), sin(φ) = sin(φ),

which requires only a single evaluation of the two trigono-
metric functions for any value of n.

5. Spherical Harmonic Importance Sampling
We can easily apply the concepts from the previous section
into a practical approach for importance sampling spherical
harmonics. First, we need to map the 2D mip-map or Haar
wavelets onto the spherical domain. This can be done using
either cylindrical or spherical coordinates. Hierarchical warp-
ing needs to evaluate Equation 3 over the area of each node in
the traversal. We therefore need to compute the integral, ŷm

l ,

of the SH basis functions, which, in cylindrical coordinates,
becomes:

ŷm
l = Km

l

(Z z+

z−
P|m|l (z) dz

)(Z φ+

φ−
Φ

m(φ) dφ

)
. (17)

These two integrals can be efficiently evaluated for all values
of l and m using Algorithm 1 and the multi-angle recurrence
relations from Section 4.1.2. The same procedure can be used
for spherical mappings after applying a change of variables
to the above equation.

To perform warping, we start at the root and evaluate the
definite integrals of all basis functions, ŷm

l , over the four
quadrants of the sphere. The weighted sum of these integrals
according to Equation 3 gives us the exact integral of the
spherical harmonic function for the four quadrants. We warp
the points according to this 2× 2 importance function, and
repeat hierarchically for each of the four child nodes. At each
stage of warping we evaluate Equation 17 with integration
bounds defined by the extents of the four child nodes. At the
end of the procedure the points are distributed with a PDF
proportional to the spherical harmonic function. The PDF
of each sample is simply the integral of the containing node
divided by the integral of the root node.

5.1. Using 1D Mip-maps
The warping technique described so far requires no precom-
putation and has infinite precision since we can continuing
warping to an arbitrary depth. However, infinite precision may
not be necessary, especially for low-order spherical harmonic
functions which vary smoothly. To improve performance, we
could precompute a cylindrical mip-map representation of all
the needed basis functions and then perform warping on the
weighted sum of these mip-maps. However, Equations 7 and
17 show that, due to separability, we can compute the 2D inte-
gral of the spherical harmonic bases by only performing two
1D integrals. We can therefore implicitly construct each of
these 2D mip-maps by storing only two 1D mip-maps. This
significantly reduces memory requirements and also improves
performance due to better cache coherence. This leads to an
efficient importance sampling scheme for spherical harmon-
ics which only requires (n+1)n/2+2n−1 1D mip-maps for
order n SH functions. Note that these mip-maps need to be
created only once, since they are not function-dependent and
can be used for any spherical harmonic function by weighting
using a different set of coefficients f m

l .

5.2. Product Sampling
Clarberg et al. [CJAMJ05] showed how to directly impor-
tance sample the product of two functions stored as Haar
wavelets by exploiting a fast wavelet product [NRH04]. The
spherical harmonic sampling technique described in the pre-
vious section implicitly creates a mip-map or Haar wavelet
representation of the function. We can therefore exploit the
fast wavelet product to importance sample the product of a
spherical harmonic function and a mip-map or Haar wavelet
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Figure 5: Comparison of BRDF importance sampling using spherical harmonics (top) and Haar wavelets (bottom). We compare these
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significantly smoother representation of the BRDF and consequently also a smoother sample distribution.
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Figure 6: Performance of spherical harmonic importance sampling.
The graph shows samples per seconds as a function of the number of
coefficients. The timing is for a 2.4GHz Core2 Duo using one core.

on-the-fly. This bridges the gap between the spherical har-
monic and Haar wavelet bases, allowing us to use spherical
harmonics for smooth functions such as BRDFs and Haar
wavelets for high-frequency environment maps. Furthermore,
the spherical harmonic function can be efficiently rotated,
freeing us to use a local coordinate system and a single, high-
resolution environment map.

6. Results
We implemented our spherical harmonics sampling algorithm
with support for wavelet products. For comparison we also
implemented the wavelet importance sampling algorithm by
Clarberg et al. [CJAMJ05]. All our results were produced on
an Intel 2.4GHz Core 2 Duo using one core.

In Figures 5 and 7 we provide visual comparisons of impor-
tance sampling Haar wavelets and spherical harmonics using
the same number of coefficients. Figure 5 shows the sam-
ple distribution resulting from importance sampling a BRDF
compressed using these two representations. We use Phong

lobe BRDFs with specular exponents set to 3, 10 and 20. Both
representations use 25, 64 and 169 coefficients respectively.
With this extreme compression, the Haar approximation con-
tains many blocky artifacts which are directly visible in the
sample distribution. Moreover, the Haar compression intro-
duces several areas with a negative function value (shown in
red), which results in areas without any samples.

In Figure 7 we compare the two representations for product
sampling of a BRDF and an environment map. Note how the
negative regions of the Haar-compressed BRDF directly im-
pact the sample distribution. The product receives no sample
points even if the environment contains bright lighting within
these regions.

Though the results in Figures 5 and 7 use the same number
of SH and Haar coefficients, for rendering, a Haar wavelet
implementation would need to store significantly more data.
Spherical harmonics support efficient on-the-fly rotations,
while a Haar representation would need to be pre-rotated for
a large set of normal directions, or a large set of pre-computed
rotation matrices would need to be stored. This means that
for moderately glossy BRDFs, our spherical harmonic sam-
pling scheme provides significant memory reduction while
providing higher quality sample distributions.

Figure 8 shows comparison renderings using our sampling
method and wavelet importance sampling in a scene contain-
ing a glossy teapot on a diffuse floor within Grace Cathedral.
We show results for 8 and 128 shadow rays per pixel for
both methods. Our approach produces visually equivalent
results to wavelet importance sampling in less time, even
though it uses six orders of magnitude less memory (0.3 KB
vs. 256 MB). We also show the artifacts that would occur in
wavelet importance sampling if the total budget for wavelet
data was limited to 1.0 KB. This extreme compression not
only produces significantly more noise, but also introduces
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Figure 7: Comparison of sample distributions computed from the product of an environment map with the Phong lobes shown in Figure 5.
Note how the highly compressed BRDF representation introduces negative values which results in areas without any samples even though the
environment contains bright sources in these regions. Our product of spherical harmonics for the BRDF and Haar wavelets for the environment
results in a smoother sample distribution without the large holes and blocky appearance of the pure wavelet product sampling approach.

bias and missing lighting features from negative values in
the wavelet reconstruction. Note that the render time only
increases marginally when moving from 8 to 128 samples
per pixel. This is because there is an overhead to compute the
product and tracing rays is very fast for this simple scene.

In Figure 6 we plot the performance of our algorithm
as a function of the number of spherical harmonic coeffi-
cients. Using order 5 spherical harmonics, our importance
sampling technique runs as fast as wavelet importance sam-
pling, producing over 6 million samples per second. This
is also competitive with other state-of-the-art importance
sampling techniques [DH06, Ost07]. The runtime of our al-
gorithm is linearly dependent on the number of spherical
harmonics coefficients in the approximation; however, the
rate of increase is extremely slow and we are able to generate
5 million samples per second even when using 400 spherical
harmonic coefficients.

7. Discussion & Future Work
It may initially seem problematic that the spherical harmonic
basis functions (and their integrals) take on both positive and
negative values. However, this is not a problem for sample
warping since the Haar basis functions also contain nega-
tive values. Hierarchical sample warping uses the average
value of the reconstructed function f̃ within each child node.
With Haar wavelets, each node’s average is computed using
a weighted sum of Haar basis functions; whereas in our ap-
proach, each node’s average is computed using a weighted
sum of integrated SH basis functions. The warping procedure
works properly as long as the reconstructed function f̃ is
non-negative.

Unfortunately, if a function is compressed excessively, neg-
ative values may appear in the reconstructed function as well.
This is true for both Haar and SH approximations. Since
functions that take on negative values are not valid PDFs,

they introduce bias in rendered images and gaps in the sam-
ple distributions. Though none of the SH approximations in
Figures 5 and 7 exhibit this behavior, lower order approxi-
mations or higher frequency functions could introduce nega-
tive values. For low-frequency BRDFs, our results show that
spherical harmonics out-perform Haar wavelets. Spherical
harmonics are not, however, without limitations. Higher spec-
ular exponents produce higher frequencies and require more
SH coefficients for accurate reconstruction without ringing.
Though very high-frequency BRDFs cannot be efficiently
represented using spherical harmonics, multiple importance
sampling [VG95] works quite well for such BRDFs. An in-
teresting avenue of future work would be to determine the
transition point at which Haar wavelets or spherical harmon-
ics become more appropriate.

One way to avoid negative values in the reconstruction
is to apply a positive offset to the whole function. Subr and
Arvo [SA07] proposed an offset and reflection technique
which could easily be applied within our algorithm; however,
automatically finding a sufficiently large offset to ensure non-
negative values for general functions is challenging. A more
practical approach could be to perform a constrained least-
squares projection that ensures the approximation remains
positive.

8. Conclusion
In this paper, we presented a novel method for sampling
spherical harmonic functions as well as sampling the product
of spherical harmonics with Haar wavelets/mip-maps. We
exploit the separability of the basis functions and utilize effi-
cient recurrence relations to provide an implicit conversion
to the mip-map basis. Our approach is able to generate over
6 million samples per second while significantly reducing
the memory requirements of previous product sampling tech-
niques.
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Haar × Haar Product Sampling (Clarberg et al. ‘05)SH × Haar Product Sampling (Our Method)

(0.3 KB / 4:02 / 7.8e-2) (0.3 KB / 4:59 / 1.0e-2)

8 samples/pixel 128 samples/pixel

(1.0 KB / 3:25 / 2.3e-1) (1.0 KB / 4:05 / 7.4e-2)

8 samples/pixel 128 samples/pixel

(256 MB / 5:23 / 9.2e-3)(256 MB / 4:30 / 7.3e-2)

8 samples/pixel 128 samples/pixel

Figure 8: Rendering comparison between our approach (left) and standard wavelet importance sampling (right). We report the memory usage,
render time (in minutes), and resulting RMS error under each image. Our method produces visually equivalent results using significantly
less memory. We use order 3 and order 9 zonal harmonics for the Lambertian floor and glossy teapot respectively, whereas nearly 70 million
pre-rotated BRDF coefficients are needed to obtain similar quality with wavelets. With 256 wavelet coefficients for the BRDF (far right), wavelet
importance sampling suffers from significant noise and lighting artifacts even when using 128 shadows rays per pixel.
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