
Hierarchical Neural Reconstruction for Path Guiding Using Hybrid
Path and Photon Samples

SHILIN ZHU, University of California San Diego, USA
ZEXIANG XU, Adobe Research, USA
TIANCHENG SUN, University of California San Diego, USA
ALEXANDR KUZNETSOV, University of California San Diego, USA
MARK MEYER, Pixar Animation Studios, USA
HENRIK WANN JENSEN, University of California San Diego and Luxion, USA
HAO SU, University of California San Diego, USA
RAVI RAMAMOORTHI, University of California San Diego, USA

Racing Car 

(3min)

Müller et al.

[2017]

Rath et al.

[2020]

Path 

Tracer

Zhu et al.

[2020] OursBako et al.


[2019]
Müller

[2019] Reference

0.7562 0.1059 0.0863 0.0508 0.0450 0.0153 0.0052

0.9682 0.2574 0.0742 0.0434 0.0229 0.0201 0.0068
Full-img (rMSE) 0.7461 0.4976 0.1551 0.1093 0.1082 0.0234 0.0139

Memory 0.37 GB0.35 GB 1.26 GB 6.82 GB0.49 GB0.45 GB 0.61 GB

Ruppert et al.

[2020]

0.0282

0.0238
0.0440

0.43 GB

Fig. 1. We present a hierarchical neural path guiding framework which uses both path and photon samples to reconstruct high-quality sampling distributions.
This Racing Car scene includes both complex direct and indirect illumination that are difficult for traditional path tracing to render. Traditional guiding
methods [Müller et al. 2017; Müller 2019; Rath et al. 2020] can reconstruct hierarchical sampling distributions (quadtrees) via online learning for multi-bounce
path guiding. However, the online learning process is relatively slow, which results in noisy sampling maps for a long time, restricting the guiding efficiency.
Bako et al. [2019] leverages offline deep learning, but it can only guide the first bounce, which naturally cannot outperform traditional online methods for
such a scene with strong global illumination. Ruppert et al. [2020] introduces parallax compensation and uses mixture models (VMMs) to represent sampling
distributions. However, the use of analytical mixtures limits the capability to represent complex radiance field from sparse path samples, which requires
careful strategies for merging and splitting of mixture components. The recent photon-driven work [Zhu et al. 2020b] can support multiple bounces using an
offline-trained network, producing better renderings than many previous methods. However, this method uses standard regular 2D images (unlike quadtrees)
for representing lighting distributions, requiring the largest memory consumption, which limits its scalability to large-scale scenes. Our approach enables
neural reconstruction of the traditional hierarchical representation via an offline-trained novel network; we can effectively reconstruct accurate quadtree-based
sampling distributions, consuming less system memory than [Zhu et al. 2020b]. Our approach also combines both path and photon samples, which is more
robust against different light-transport scenarios. As a result, we can achieve better quantitative (reflected by lower rMSE– relative Mean Squared Error) and
qualitative results, with moderate memory cost comparable to traditional online methods that do not use deep neural networks.

Path guiding is a promising technique to reduce the variance of path tracing.

Although existing online path guiding algorithms can eventually learn good

Authors’ addresses: Shilin Zhu, University of California San Diego, USA, shz338@

eng.ucsd.edu; Zexiang Xu, Adobe Research, USA, zexu@adobe.com; Tiancheng Sun,

University of California San Diego, USA, tis037@eng.ucsd.edu; Alexandr Kuznetsov,

University of California San Diego, USA, a1kuznet@eng.ucsd.edu; Mark Meyer, Pixar

Animation Studios, USA, mmeyer@pixar.com; Henrik Wann Jensen, University of

California San Diego and Luxion, USA, henrik@cs.ucsd.edu; Hao Su, University of

California San Diego, USA, haosu@eng.ucsd.edu; Ravi Ramamoorthi, University of

California San Diego, USA, ravir@cs.ucsd.edu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

0730-0301/2021/8-ART35

https://doi.org/10.1145/3450626.3459810

sampling distributions given a large amount of time and samples, the speed of

learning becomes amajor bottleneck. In this paper, we accelerate the learning

of sampling distributions by training a light-weight neural network offline to

reconstruct from sparse samples. Uniquely, we design our neural network to

directly operate convolutions on a sparse quadtree, which regresses a high-

quality hierarchical sampling distribution. Our approach can reconstruct

reasonably accurate sampling distributions faster, allowing for efficient path

guiding and rendering. In contrast to the recent offline neural path guiding

techniques that reconstruct low-resolution 2D images for sampling, our novel

hierarchical framework enables more fine-grained directional sampling with

less memory usage, effectively advancing the practicality and efficiency of

neural path guiding. In addition, we take advantage of hybrid bidirectional

samples including both path samples and photons, as we have found this

more robust to different light transport scenarios compared to using only

one type of sample as in previous work. Experiments on diverse testing

scenes demonstrate that our approach often improves rendering results with

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459810


35:2 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

better visual quality and lower errors. Our framework can also provide the

proper balance of speed, memory cost, and robustness.

CCS Concepts: • Computing methodologies → Ray tracing.

Additional Key Words and Phrases: Global Illumination, Path Guiding, Ray

Tracing, Sampling and Reconstruction, Neural Rendering

ACM Reference Format:
Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer,

Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2021. Hierarchical

Neural Reconstruction for Path Guiding Using Hybrid Path and Photon

Samples. ACM Trans. Graph. 40, 4, Article 35 (August 2021), 16 pages. https:
//doi.org/10.1145/3450626.3459810

1 INTRODUCTION
The simple and flexible Monte-Carlo path tracing algorithm has

become the gold standard for physically-based rendering. However,

a major drawback is the slow convergence problem, leading to

unpleasant Monte Carlo noise in the rendered image. In recent years,

researchers have successfully tried many denoising and filtering

techniques to reduce the noise level [Chaitanya et al. 2017; Bako et al.

2017; Vogels et al. 2018]. However, the denoised image is no longer

unbiased, and sometimes has remaining low-frequency artifacts.

Path guiding is a promising direction to reduce path tracing vari-

ance while remaining unbiased. The key idea is to learn a better

sampling distribution (approximating the incident light field or some

variant of it) at arbitrary scene locations and guide camera rays to-

wards the light source. Previous methods [Müller et al. 2017; Rath

et al. 2020; Ruppert et al. 2020] often require a slow online learning

process to obtain accurate sampling distributions for path guiding.

While some recent works [Bako et al. 2019; Zhu et al. 2020b] use

offline-trained neural networks, their methods require large system

memory and can only reconstruct sampling distributions at a low

resolution, restricting the accuracy and efficiency of path guiding.

In this work, we present a novel neural path guiding approach

that can effectively reconstruct accurate hierarchical high-resolution

sampling distributions, leading to efficient path guiding and ren-

dering. Our approach uses an offline-trained neural network to

accelerate the online learning in traditional path guiding. Unlike

previous offline neural methods that represent a distribution using

a uniform grid (as a 2D image), we consider the classical quad-tree

based representation, allowing for efficient high-resolution distri-

bution modeling. As shown in Fig. 1, our approach successfully

advances the efficiency of neural path guiding, leading to better

rendering quality with moderate memory costs.

We present a novel deep neural network for efficient hierarchical

distribution reconstruction. Our technique is inspired by the octree

networks [Wang et al. 2017] in 3D geometry processing. We pro-

pose to operate deep 2D convolutions directly on a sparse quadtree

that represents a 2D angular sampling distribution, enabling an

efficient hierarchical reconstruction. Our network can adaptively

adjust the tree structure in reconstruction, which learns the proper

angular resolution for each sampling solid angle bin. This results

in high-quality distributions that accurately express the incident

light fields. In contrast to the standard convolutional neural net-

works (CNNs) that can only regress low-resolution sampling maps

[Zhu et al. 2020b], our network hierarchically regresses a compact

Table 1. Comparison of different path guiding algorithms. Our proposed
framework can achieve both fast and robust rendering by leveraging neural
networks and hybrid samples with a small memory consumption thanks to
the hierarchical representation of sampling distributions.

Hybrid Hierarchical Neural

[Vorba et al. 2014] ✗(Photon) ✗(GMM) ✗

[Müller et al. 2017] ✗(Path) ✓(Quadtree) ✗

[Müller 2019] ✗(Path) ✓(Quadtree) ✗

[Bako et al. 2019] ✗(Path, 1st bounce) ✗(Image) ✓

[Rath et al. 2020] ✗(Path) ✓(Quadtree) ✗

[Zhu et al. 2020b] ✗(Photon) ✗(Image) ✓

Ours ✓(Path + Photon) ✓(Quadtree) ✓

quadtree that represents the same distribution at a much higher res-

olution using less memory. The adaptivity and compactness of our

hierarchical reconstruction improves the scalability to large-scale

complex scenes where a large number of sampling distributions

need to be stored on numerous mesh surfaces.

Previous path guiding work uses either path samples [Müller et al.

2017; Müller 2019; Rath et al. 2020; Ruppert et al. 2020] or photons

[Jensen 1995; Vorba et al. 2014, 2019] to reconstruct an incident

radiance field which is then converted to a sampling distribution

at any scene location. Our hierarchical neural reconstruction can

potentially support either input samples independently. However,

path samples and photons can perform differently depending on

the actual light transport cases (see extreme examples in Fig. 3).

When the scene contains caustics produced by transparent objects

or tiny light sources, photons are more efficient since it is difficult

for path samples to quickly find a valid direction towards the light.

On the other hand, path samples are a better choice when some

light sources do not illuminate the visible regions of the scene,

since many photons can be invisible and useless in this case. In this

work, we use both of them and let the neural network figure out

how to effectively combine the hybrid samples into a single output

sampling distribution. Therefore, our approach is more robust to

general scenes with unknown light transport scenarios.

In summary, our main contributions are:

• We propose a novel learning-based framework that can re-

construct a hierarchical sampling distribution from sparse

samples with a moderate memory cost;

• We consider hybrid input samples including both path sam-

ples and photons for path guiding, leading to higher robust-

ness and generality on diverse light transport cases.

2 RELATED WORK
Path Guiding. Monte-Carlo path tracing [Kajiya 1986] has been

the fundamental solution for solving the light transport in a complex

scene. However, during path tracing, the incident light distribution

is unknown at each 3D point. Thus, most of the path tracing variants

sample the space only based on the geometry and reflectance prop-

erties. Instead, path guiding algorithms [Vorba et al. 2019] estimate

sampling distributions based on the local incoming light field during

path tracing, so that they can use the information to perform better

importance sampling and accelerate the rendering process.

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459810
https://doi.org/10.1145/3450626.3459810


Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:3

Several path guiding algorithms (Table 1) have been proposed

to efficiently estimate the local light field information in order to

better sample the space. Vorba et al. [2014] fitted a Gaussian-Mixture

model (GMM) to represent the incoming radiance at each spatial

cache point during ray tracing. With very few parameters, a GMM

can efficiently model the light distribution, and is then applied to

other rendering algorithms [Herholz et al. 2016; Ruppert et al. 2020].

However, GMMs fail to accurately represent high-frequency light

distributions, which are common in scenes with complex lighting.

Müller et al. [2017, 2019] proposed to use hierarchical quadtree struc-

tures to record the incoming light field in the space, which is more

efficient and practical than a GMM [Vorba et al. 2014] or simple

regular grid [Jensen 1995]. This hierarchical representation was also

extended to primary space [Guo et al. 2018], product sampling [Di-

olatzis et al. 2020], and variance-aware importance sampling [Rath

et al. 2020]. However, until now, such a hierarchical representation

can only be reconstructed via traditional online learning without

any neural network components, and requires relatively large num-

ber of samples. Our neural approach can directly reconstruct an

accurate hierarchical quadtree representation from sparse input

samples, using an offline-trained novel deep neural network.

Recently, deep learning techniques have been used to facilitate

the learning of local light distributions and importance sampling of

light paths (e.g., in primary sample space [Zheng and Zwicker 2019]).

Müller et al. [2019] used an online-learnt neural network to perform

the importance sampling. The network can estimate the distribution

accurately, but can be potentially expensive in practice due to the re-

peated network inference and online optimization. Bako et al. [2019]

trained an offline-learnt network to guide the first bounce, where

regular images are used to represent the incoming light distribution.

While images are convenient for neural networks, they consume

more memory when detailed light distributions are needed. Huo

et al. [2020] used a reinforcement learning technique to guide the

samples, but their method is also limited to the first bounce. Zhu

et al. [2020b] used photons as the primary source to estimate the

local light distributions, and use them to guide all bounces. Again,

standard images are used to represent the distributions, which is

less memory efficient and limited to low resolutions compared to

the quadtree. In this paper, we learn the light distribution on hierar-

chical structures, which are both detailed and memory-efficient. Our

approach takes advantage of using both path and photon samples,

leading to better generality on different scenes. We believe these

are important steps to make neural path guiding practical.

Hierarchical Learning. Hierarchical structures can represent sparse
data in an efficient way [Müller et al. 2017; Müller 2019]. However,

learning on the hierarchical structures has been a particular chal-

lenge. Recently, there have emerged plenty of studies that focus

on the learning and understanding on hierarchical structures, es-

pecially in the 3D geometry processing community. Wang et al.

[2017, 2018] proposed O-CNN to analyze 3D shapes represented

by octrees; Graham [2015] developed sparse convolution for 3D

understanding, which is similar to sparse matrix representation.

On the other hand, there are also works on generating hierarchi-

cal structures [Tatarchenko et al. 2017; Chitta et al. 2020; Riegler

et al. 2017]. These algorithms were then extended to perform 3D

shape completion [Wang et al. 2020], 3D segmentation [Graham

and van der Maaten 2017; Graham et al. 2018], and sketch under-

standing [Kumar Jayaraman et al. 2018]. Besides convolutional op-

erators, multi-layer perceptrons [Li et al. 2017, 2019] and graph

networks [Mo et al. 2019] are also used for hierarchical learning. In

this work, we extend these hierarchical 3D learning techniques to

the problem of 2D sampling distribution reconstruction. We intro-

duce a novel light-weight network that can effectively regress an

accurate quadtree distribution for high-quality path-guiding.

Hybrid samples. Both paths and photons are efficient tools to

explore the scene and compute the radiance in the 3D space. While

path tracing [Kajiya 1986] algorithms are particularly good at explor-

ing complex geometry setups, photon mapping algorithms [Shirley

et al. 1995; Jensen 1996; Hachisuka et al. 2008; Knaus and Zwicker

2011; Zhu et al. 2020a] can be very effective when indirect light-

ing dominates the scene. Aiming at a rendering algorithm that can

work on both cases, researchers proposed bidirectional approaches

[Lafortune and Willems 1993; Veach and Guibas 1995a; Georgiev

et al. 2012; Křivánek et al. 2014], which combine the benefits of both

path tracing and photon mapping. Similarly, in our paper we use

both path samples and photons as the sources to learn the local light

distributions in the scene. Compared to the previous path guiding

works that use only path samples [Müller et al. 2017; Bako et al. 2019;

Rath et al. 2020] or photons [Vorba et al. 2014; Zhu et al. 2020b], our

algorithm can render more efficiently and is more robust across a

wide range of difficult scenes with complex light transports. In fact,

Vorba et al. [2014] also use both path and photon samples. However,

they train with two separate cache records, where path tracing is

guided by local photons and path samples do not directly affect

camera path guiding. Our neural system instead takes the hybrid
of two types of samples as direct inputs; they directly contribute to

the same forward sampling distribution.

As shown in Table 1, our path guiding algorithm uniquely utilizes

the hybrid samples. Additionally, previous works either perform

learning on image-based sampling distributions, or use hierarchical

structures to represent the distributions (because of the difficulty of

applying neural networks to irregular quad-tree structures), but not

both. In contrast, our path guiding algorithm successfully applies

an offline-learnt neural network on hierarchical structures.

3 BACKGROUND
Rendering equation. To render a scene using light transport simula-

tion, our goal is to solve the rendering equation [Kajiya 1986]:

𝐿(𝒙, 𝜔𝑜 ) = 𝐿𝑒 (𝒙, 𝜔𝑜 ) +
∫
Ω
𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖𝑑𝜔𝑖 , (1)

where the outgoing radiance 𝐿(𝒙, 𝜔𝑜 ) in direction𝜔𝑜 at each surface

point 𝒙 equals the sum of the surface emission 𝐿𝑒 (𝒙, 𝜔𝑜 ) and the

reflection from the incoming radiance 𝐿𝑖 (𝒙, 𝜔𝑖 ) of every direction𝜔𝑖

that has angle 𝜃𝑖 to the surface normal over the hemisphere Ω. The
Bidirectional Scattering Distribution Function (BSDF) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 )
describes how much radiance can be scattered to 𝜔𝑜 from 𝜔𝑖 .

The integration 𝐿𝑟 (𝒙, 𝜔𝑜 ) =
∫
Ω 𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖𝑑𝜔𝑖

in Eqn. 1 is computed by Monte Carlo (MC) estimation [Veach 1997]

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:4 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

in the path tracing algorithm:

𝐿𝑟 (𝒙, 𝜔𝑜 ) =
1

𝑁

𝑁∑
𝑖=1

𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖
𝑝 (𝜔𝑖 )

(2)

where 𝑁 is number of samples and 𝑝 (𝜔𝑖 ) is the probability density

function (PDF) of sampling direction 𝜔𝑖 (i.e., importance sampling).

When 𝑁 is sufficiently large, the variance of 𝐿𝑟 (𝒙, 𝜔𝑜 ) reduces, and
path tracing gradually converges to the noise-free result.

In many challenging light transport scenarios, the convergence

is very slow, which is the major drawback of Monte Carlo path

tracing. Fortunately, we can greatly speed up the variance reduction

by sampling from a better PDF 𝑝 (𝜔𝑖 ) that resembles the integrand

𝐿𝑖 (𝒙, 𝜔𝑖 ) 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) cos𝜃𝑖 . However, the incident radiance field

𝐿𝑖 (𝒙, 𝜔𝑖 ) is unknown in the beginning, so standard path tracing

only leverages the BSDF for importance sampling:

𝑝BSDF (𝜔𝑖 ) ∝ 𝑓𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 ) (3)

Guiding using path samples. In contrast, path guiding is a method

to evaluate the incident light 𝐿𝑖 (𝒙, 𝜔𝑖 ) and set the PDF to be propor-
tional to some terms related to it. Many previous papers [Müller et al.

2017; Müller 2019] use early (or extra) Monte Carlo path samples to

compute a sampling distribution as:

𝑝
guide

(𝜔𝑖 ) ∝ 𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖 , (4)

which expresses the incident light field (the cosine term is sometimes

associated to the BSDF sampling in Eqn. 3). In practice, this guided

sampling is often combined with BSDF sampling, using one-sample

Multiple Importance Sampling (MIS) [Veach and Guibas 1995b]:

𝑝 (𝜔𝑖 ) = 𝛼𝑝BSDF (𝜔𝑖 ) + (1 − 𝛼)𝑝
guide

(𝜔𝑖 ) (5)

where the coefficient 𝛼 determines the chance of selecting BSDF

over guiding for importance sampling.

However, since 𝐿𝑖 (𝒙, 𝜔𝑖 ) is also from the noisy Monte Carlo sam-

ples [Müller et al. 2017], the estimates are also noisy and can have

high variance, making the sampling inefficient. Recently, Rath et

al.[2020] introduce a variance-aware guiding technique, leveraging

a new target sampling function that considers the variance:

𝑝
guide-var

(𝜔𝑖 ) ∝
√
E[𝐿2

𝑖
(𝒙, 𝜔𝑖 )] cos2 𝜃𝑖 (6)

where E[·] represents the expectation. Additionally, they also take

the surfacematerial into account, resulting in the BSDFmarginalized

product sampling [Rath et al. 2020] used for path guiding:

𝑝
guide-var-prod

(𝜔𝑖 ) ∝
√
E𝜔𝑜

[𝑓 2𝑟 (𝒙, 𝜔𝑖 , 𝜔𝑜 )E[𝐿2𝑖 (𝒙, 𝜔𝑖 )] cos2 𝜃𝑖 ]
(7)

Our framework generally supports various sampling functions. We

take advantage of the advanced variance-aware technique (Eqn. 7)

to generate our results by default, leading to better quality than our

results with the traditional distribution (Eqn. 4).

Guiding using photons. In some special light transport cases such

as caustics from transparent objects or tiny light sources that are

hard to find through Monte Carlo sampling, most path samples

are terminated before reaching any light, leading to more noisy

𝐿𝑖 (𝒙, 𝜔𝑖 ) estimation. Compared to path samples, photons are often

a better choice in these scenarios, which have been used for path

guiding by previous work [Jensen 1995; Vorba et al. 2014; Zhu et al.

2020b]. Each photon 𝑝 carries a small portion of the emitter power

(radiant flux) ΔΦ𝑝 and its direction 𝜔𝑝 indicates where the light

comes from. The power Φ(𝒙,ΔΩ) that flows through a solid angle

footprint ΔΩ in local surface area 𝐴 is computed via integrating the

incident radiance 𝐿𝑖 (𝒙, 𝜔𝑖 ) where 𝜔𝑖 ∈ ΔΩ:

Φ(𝒙,ΔΩ) =
∫
𝐴

∫
ΔΩ

𝐿𝑖 (𝒙, 𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖𝑑𝒙 . (8)

The target distribution can be expressed as [Zhu et al. 2020b]:

𝑝
guide-photon

(𝜔𝑖 ) ∝ Φ(𝒙,ΔΩ)/ΔΩ =
∑

𝜔𝑝 ∈ΔΩ,𝒙∈𝐴
ΔΦ𝑝/ΔΩ (9)

This sampling distribution similarly approximates Eqn 4, but it

is evaluated by the summation of the surrounding photon power,

instead of the Monte Carlo estimation of path samples.

In practice, it is hard to know whether a path sample or photon

is better for an unknown scene; two extreme examples are shown

in Fig. 3. Therefore, in this paper, we choose to use both of them

(i.e., hybrid samples), although our framework also directly applies

to a single type of sample. Combining path samples and photons

is challenging since they distribute very differently and there is

no obvious and cheap way to combine them through re-weighting

(VCM [Georgiev et al. 2012] and its concurrent work [Hachisuka

et al. 2012] design specific techniques to address a similar issue in

radiance estimation, which however cannot be easily extended to

distribution estimation). Therefore, we use a neural network that

learns to combine their values and reconstructs a single sampling

distribution (Sec. 6) that is then used for path guiding.

4 OVERVIEW
The entire framework is illustrated in Fig. 2. We trace both photon

and path samples (i.e., hybrid samples), and deposit them into a

local quadtree representation of the sampling distribution stored in

a local spatial caching node as shown in Fig. 2(a) and (b). This step

is similar to the online quadtree construction in [Müller et al. 2017];

it leads to noisy distributions unless a large number of samples

are deposited. We instead propose to use a deep neural network

(pre-trained) to hierarchically reconstruct accurate quadtree distri-

butions from the noisy ones in Fig. 2(c). In the following sections,

we first describe the steps of building an initial quadtree at arbitrary

scene locations and depositing hybrid samples into it (Sec. 5). Next,

Sec. 6 presents the key component of our framework: a novel neural

network to reconstruct high-quality hierarchical sampling distri-

butions using both the initial noisy path and photon distributions

as input. Finally, we discuss the details of adaptively caching the

reconstructed distributions at different locations in the scene and

rendering of the final image (Sec. 7). Thereafter, Sec. 8 provides

the implementation details of neural training, sample tracing, and

rendering. Experiments on diverse testing scenes in Sec. 9 justify

the effectiveness of our proposed framework.

5 HIERARCHICAL STRUCTURE FOR HYBRID SAMPLES
As we discussed in Sec. 3, we need to collect path samples and/or

photons to learn a directional sampling distribution that resembles

the incident radiance field at arbitrary scene locations. Compared to

the previous neural path guiding work [Bako et al. 2019; Zhu et al.

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:5

Sample

Features


 ⃗f Input Quadtree Qh

Accumulate

 ∑

Sample

S

Next bounce

Pos

Dist
Norm
Dirc

Val

Spatial Caching Node

Encoder 
(Hierarchical 

CNN)

Decoder 
(Hierarchical 

CNN)

Top-Level Feature

M0

Skip LinksNormalized

Path Features


 ⃗F path

Normalized

Photon Features


 ⃗F photon
Reconstructed Quadtree Qr

(Z,  )Φ

Renderer 
(Path guiding)

(Z,  )Φ

(a) (b) (c)

Scene
Count

Fig. 2. High-level illustration of the proposed neural path guiding framework. The scene is partitioned into many spatial caching nodes (voxels). Each voxel
collects all the samples that arrive at it (a) and uses the sample information to adatpively construct a quadtree 𝑄ℎ (b), parameterized in the cylindrical
coordinates 𝜔𝑖 to (𝑧, 𝜙) . Each sample contains its value along with some auxiliary features including the relative position ®𝑝 , direction 𝜔𝑖 , distance ®𝑑 , normal
®𝑛, and sample count 𝑐 = 1, which leads to a feature vector ®𝑓 that will be accumulated into a leaf 𝑙 of the quadtree𝑄ℎ (Sec. 6.2). The accumulation is applied
separately to path samples and photons, resulting in two independent feature vectors ®Fpath and ®Fphoton (Eqn. 11). We propose a novel neural network that can
directly operate convolutions on quadtree distributions (Sec. 6.3), which has an architecture with hierarchical encoder and decoder (Sec. 6.4). We train our
network offline that learns to hierarchically regress accurate sampling distributions from noisy inputs. The pre-trained network can reconstruct a high-quality
quadtree𝑄𝑟 (c) from the input𝑄ℎ ; the reconstructed𝑄𝑟 is stored in the spatial voxel and later used for path guiding (Sec. 7).

2020b], we hierarchically build a quadtree instead of a uniform 2D

grid (image) to represent the distribution. Hybrid samples are traced

and stored in the tree, which are later provided to our hierarchical

neural network for sampling distribution reconstruction (Sec. 6).

Our quadtree-based distributions are stored in small spatial caching

nodes distributed within the scene, as shown in Fig. 2(a). Later in

Sec. 7, we discuss the details of adaptively partitioning the scene

space into local regions of different sizes for efficient spatial caching.

We keep two quadtrees in each spatial node: one records the online

traced hybrid samples, representing a noisy distribution and used as

network input; the other is the output of the network, representing

an accurate sampling distribution for path guiding. The initial noisy

quadtree collects local samples that arrive at the node, containing

rich information of the local incident radiance field.

Quadtree representation. We use the 2D cylindrical coordinates to

parameterize the angular space; each unit vector (𝑥,𝑦, 𝑧) is mapped

to (𝑧, 𝜙), where 𝜙 = arctan(𝑦/𝑥). A quadtree Qℎ is built to hier-

archically cover the space of (𝑧 ∈ Z, 𝜙 ∈ Φ) at each spatial node,

recording the hybrid samples traced at rendering time (Fig. 2(b)).

Accumulating hybrid samples. Once a sample S (either path or

photon), carrying a sample quantity𝑉S, arrives at a particular spatial

node, we convert its incident direction 𝜔𝑖 = (𝑥,𝑦, 𝑧) to the cylindri-

cal space mentioned above, and deposit it to a corresponding leaf

node 𝑙 of the quadtree Qℎ . In particular, we leverage a stochastic

box filter [Müller 2019], which deposits the sample value 𝑉S into a

single neighboring tree leaf 𝑙 around its original direction 𝜔𝑖 ; this is

equivalent to splatting the sample with a box filter into the quadtree.

Since path samples and photons have different radiometric units

(Sec. 3), we keep two separate accumulators A𝑙
path

and A𝑙
photon

:

A𝑙
path

=
∑

𝑉 𝑙
Spath

A𝑙
photon

=
∑

𝑉 𝑙
Sphoton

(10)

where 𝑉 𝑙
Spath

and 𝑉 𝑙
Sphoton

are splatted sample quantities in leaf 𝑙 .

Quadtree subdivision. Initially, the tree Qℎ has a single node. To

effectively construct Qℎ as a hierarchical structure, we iteratively

trace samples (Sec. 7) and subdivide the tree accordingly. Specifically,

Qℎ is adaptively refined after the samples in the current iteration

are deposited based on a criterion [Müller et al. 2017]: if a node

value A𝑙
path

or A𝑙
photon

is greater than 𝑘% (we empirically find that

0.5% ∼ 1% is a reasonable threshold) of its total value (

∑
𝑙 A

𝑙
path

or∑
𝑙 A

𝑙
photon

) inQℎ , the node is split into four equal-sized child nodes

where each of them is assigned 1/4 of the parent value, otherwise it
remains as a leaf node. This criterion is applied recursively to each

node in the tree. After Qℎ is updated, it is used to collect future

samples in the next iteration, so thatQℎ can be repeatedly refined to

better versions. This strategy allows Qℎ to have higher directional

resolution when the radiance of an incident direction is large. Note

that if only path samples are considered (as in previous work [Müller

et al. 2017]), then only A𝑙
path

is used to build and refine Qℎ .

This iteratively-refined quadtreeQℎ can in fact model an accurate

sampling distribution when the number of accumulated samples is

large enough. However, this requires a large number of iterations

and a long time for accumulation, which cannot promptly provide

reliable sampling distributions. Especially at the beginning of ren-

dering, the accumulated sampling quadtrees are highly noisy and

inadequate for path guiding. In Sec. 6, we design a novel neural

network to handle the hybrid input samples stored in each leaf 𝑙 .

6 NEURAL RECONSTRUCTION OF SAMPLING
DISTRIBUTIONS

In this section, we introduce our novel hierarchical neural network

that can effectively convert the deposited hybrid samples (Sec. 5)

to a high-quality sampling distribution for path guiding. We first

discuss the motivation of applying neural networks in the context

of sampling distributions (Sec. 6.1). Next, we present our network

input (Sec. 6.2), the convolutional module applied on a quadtree

(Sec. 6.3), and the detailed neural architecture (Sec. 6.4). Finally, we

introduce our loss function to train the neural network (Sec. 6.5).

6.1 Motivation of neural reconstruction framework
As discussed in Sec. 5, directly reconstructing an accurate quadtree

distributionQℎ via online accumulation usually requires a long time

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:6 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

Müller et al. [2017] Rath et al. [2020] Zhu et al. [2020] OursMüller [2019] Reference
rMSE
Mem

rMSE
Mem

0.076 GB

0.076 GB

0.200 GB

0.327 GB

0.319 GB

0.317 GB

3.212 GB

2.300 GB

0.655 GB

0.438 GB

0.8666 0.4149 0.3562 0.0834 0.0263

0.3351 0.0908 0.0549 0.2423 0.0162

1  Spot Light∘

Tiny Hole

Directional 
Light

Fig. 3. Extreme conditions. We compare our method with previous path guiding methods, running with equal time, on two Cornell Box scenes that have
two different extreme light transport settings. We turn on the next event estimation for all methods in this experiment. Previous methods utilize either path
samples [Müller et al. 2017; Müller 2019; Rath et al. 2020] or photons [Zhu et al. 2020b] as input for path guiding, which cannot work well on both cases at the
same time. In the first row, the scene is illuminated by a very small 1◦ spotlight (facing upwards) located very close to the roof. This setting is extremely hard
for path-based methods [Müller et al. 2017; Müller 2019; Rath et al. 2020] since the light is hard to connect to; yet, the photon-based method [Zhu et al. 2020b]
still works well. On the other hand, the second row shows a scene illuminated by a directional light coming from the top, while the roof only has a very tiny
hole that can receive this light. While path-based methods can still be effective for this setting, the photon-based method [Zhu et al. 2020b] cannot work well
(even empowered by deep learning) since most photons will be blocked by the roof and not useful at all. Our novel neural approach leverages both path and
photon samples as input, and can successfully work on both challenging cases. We also show the corresponding sampling distributions reconstructed by all
methods. Note that these methods may have different ground-truth target sampling distributions (see Sec. 3). We only show our ground truth (the target of
[Rath et al. 2020]) as the reference. While the target sampling functions are different, we can still observe our neurally reconstructed quadtrees are of higher
quality than the noisy quadtrees reconstructed traditionally by [Müller et al. 2017; Müller 2019; Rath et al. 2020]; ours also contain sharper details than the
regular image representation of [Zhu et al. 2020b]. Our quadtrees are reasonably accurate compared to the reference.

to trace a large number of samples, leading to low quality of sam-

pling at early rendering times (as appears in previous work [Jensen

1995; Müller et al. 2017]). We therefore seek to directly reconstruct

an accurate quadtree distribution from the initial noisy quadtree;

this can be seen as a traditional image reconstruction task (like

denoising, inpainting, or restoration) in the (Z,Φ) space, except
that now the task is applied on hierarchical trees instead of regular

2D images. Therefore, the standard CNN on a 2D grid image (e.g.,

[Bako et al. 2019; Zhu et al. 2020b]) is no longer applicable, and

we aim to design a new neural architecture that extends CNNs to

hierarchical inputs and outputs. Meanwhile, prior works have been

addressing a similar task in 3D geometry processing. They apply

CNNs on octrees [Wang et al. 2017, 2018] and hierarchical MLPs on

grammar trees [Li et al. 2017, 2019] to achieve highly efficient 3D

learning. We extend these 3D learning techniques to reconstruction

of sampling distributions and we propose to apply neural convo-

lutional operations on the 2D sampling quadtrees. Note that our

neural framework can not only denoise the values of the input Qℎ ,

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:7

Table 2. List of notations used in Sec. 5, Sec. 6, and Sec. 7.

Notation Meaning

Hierarchical

input

structure

(Sec. 5)

S Sample

𝑙 Quadtree leaf

𝜔𝑖 Sample direction

(Z,Φ) Directional sampling space

𝑉S Sample value

A Accumulated sample value

Qℎ input quadtree from online accumulation

Neural

network

framework

(Sec. 6)

Q𝑟 Reconstructed quadtree from the neural network

Qgt Target (groundtruth) quadtree

®𝑓 Per-sample feature vector

®F Per-leaf feature vector

𝐹conv Convolution result

M Per-level feature map

V Predicted relative value to the parent node

𝑝
leaf

Predicted probability of node being a leaf

𝑚, 𝑛 Encoding and decoding tree level

𝑞, 𝑞𝑐 Decoded tree node and one of its children

L𝑄𝑟 Loss function

P Pooling

S Convolution

U Upsampling

T Node type classifier

R Value regressor

Sampling

and

rendering

(Sec. 7)

𝑟init Initial grid resolution

G Adaptive hierarchical hash grid

Bspt KD-tree in each voxel

𝑘spt Spatial subdivision threshold

𝑡 , T Current and total iteration(s)

𝛼 One-sample MIS coefficient

but also create a completely separate hierarchical structure Q𝑟 that
can be different from Qℎ , better representing the target distribu-

tion. Our hierarchical neural reconstruction leverages the sparsity

of the sampling distribution, processing and modeling directly on

quadtrees; this allows for high-resolution modeling using low mem-

ory, which is not achievable when using regular images with CNNs.

In addition, we also design our network to be compact enough for

high computational and memory efficiency; this is ideal for path

guiding, since it needs to simultaneously reconstruct sampling dis-

tributions at many different scene locations without introducing

too much overhead to the rendering algorithm.

6.2 Input hybrid samples
As described in Sec. 5, when a new path sample or photon arrives,

we convert its 𝜔𝑖 into (𝑧, 𝜙) and search Qℎ to find its corresponding

leaf node. Two separate value accumulators (A
path

and A
photon

in

Eqn. 10) are used for adaptively refining Qℎ . However, using only
one-channel sample values is insufficient for reconstructing a better

quadtree. In this work, we collect additional auxiliary per-sample

information and form a hybrid multi-channel feature vector, as

illustrated in Fig. 2(a). Specifically, each sample contains value V
and additional features which include the local sample position

®𝑝 , the sample direction 𝜔𝑖 , the distance 𝑑 to the next bounce, the

surface normal directions ®𝑛 of the current and next bounce, and the

sample count 𝑐 = 1. For path samples, we also append the BSDF

value 𝑓𝑟 to the vector. Finally, as shown in Fig. 2(b), sample features

®𝑓
path

and
®𝑓
photon

are accumulated on each leaf 𝑙 at tree level𝑚, and

then concatenated into a single feature vector ®F𝑚,𝑙
:

®𝑓
path

= (V, 𝜔𝑖 , ®𝑝,𝑑, ®𝑛, 𝑐, 𝑓𝑟 ) ®𝑓
photon

= (V, 𝜔𝑖 , ®𝑝,𝑑, ®𝑛, 𝑐)
®Facc = (

∑
®𝑓
path

,
∑

®𝑓
photon

)

®F𝑚,𝑙 = (
®Facc
path

max

𝑄ℎ

®Facc
path

,

®Facc
photon

max

𝑄ℎ

®Facc
photon

)
(11)

where (, ) means vector concatenation, and summations are com-

puted for each leaf. max

𝑄ℎ

®Facc is the feature-wise maximum value

within the entire quadtreeQℎ after the summation, which is used for

separately normalizing the input of path samples and photons. This

normalization effectively removes the radiometric unit difference

between path samples and photons. The sample direction 𝜔𝑖 is also

implicitly included in the (𝑧, 𝜙) coordinates of S.

6.3 Convolution on a quadtree
Wepropose to directly apply convolutions on the quadtree to process

and regress the hierarchical feature data. In general, given a leaf 𝑙 on

level𝑚 in Qℎ , a convolutional layer outputs a new feature 𝐹
𝑚,𝑙
conv

via

a linear operation that is applied on its neighbors (empty neighbor

nodes are regarded as zeros) on the same tree level𝑚:

𝐹
𝑚,𝑙
conv

[𝑔] =
∑
𝑐

∑
𝑖

∑
𝑗

𝑊𝑖, 𝑗,𝑐 [𝑔] · ®F𝑚,𝑙
𝑖, 𝑗,𝑐

M𝑚 [𝑔] [𝑙] = 𝐹
𝑚,𝑙
conv

[𝑔]
(12)

where 𝑖 and 𝑗 are 2D indices of the neighbors inside the convolu-

tional kernel𝑊 , 𝑐 represents the channel index of input features,

and 𝑔 is the index of kernels (also the channel index of the output

feature). HereM𝑚
is a sparse 2D feature map, containing the output

features of all valid leaves. Note that, this convolution on a quadtree

(Eqn 12) is not much different from the standard convolutional

layer on a 2D image. However, each ®F𝑚,𝑙
𝑖, 𝑗,𝑐

represents a feature in a

quadtree leaf node instead of a standard pixel; unlike an image, leaf

nodes on a single tree level𝑚 can distribute very sparsely, where

only a few leaves contain actual features that require convolutions.

Moreover, accessing a neighbor within the convolutional ker-

nel requires searching in the quadtree Qℎ to get its stored features

®F𝑚,𝑙
(Eqn. 11). This is non-trivial and can be much slower than

the standard CNN on a regular image where any element in an ar-

ray is immediately accessible. Fortunately, this neighboring search

problem has been addressed by the 3D shape processing commu-

nity using a faster hash table implementation [Graham et al. 2018;

Wang et al. 2017, 2018] with an optimization on reducing hash table

lookup times. In this work, we apply the same technique to speed

up our CNN on quadtrees, enabling efficient quadtree convolutional

operations. The same neighboring search is also naturally applied

to pooling layers in our network. Note that, because of the sparsity

of a quadtree, the network layers are applied only to the sparse

nodes in each tree level𝑚, which actually reduces the amount of

computation compared to the standard dense CNNs.

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:8 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

Conv + Pool

Conv + Pool

Pool

Input 

Quadtree Qh

Encoder

Conv

Conv

Menc1

Menc3

Coarse

Fine

Conv + Upsample

Conv + Upsample

Conv

Conv + Upsample

Node Type

Classifier

Conv + Softmax

0.1 0.2

0.3 0.4

Menc4 Mdec4

Skip

Link

Interm.

Nodes

Reconstructed 

Quadtree Qr

Decoder

………… …… ………
…

…
…

Multi-Scale Input Encoded Feature Maps Decoded Feature Maps Multi-Scale Reconstruction

F4

F3

F1 Vrec1

Mdec3

Mdec1

Decompose Unroll

And


Merge

Menc0

Vrec3

Vrec4

 Relative Value = 1∑

Node Type

Classifier

Conv + Softmax

Interm.

Nodes

Node Type

Classifier

Conv + Softmax

Fig. 4. Our proposed hierarchical encoder-decoder architecture for reconstructing an accurate quadtree representation of sampling distributions. Here, we
show an example containing only 4 levels. In practice, the input and output tree can have different levels ranging from 1 to 20. First, on each level𝑚 of the
noisy input quadtree𝑄ℎ , we apply a series of convolutional and pooling layers to encode the sample features F𝑚 to a neural feature mapM𝑚

enc. By repeatedly
applying these operations hierarchically from the bottom level to the root node, we eventually encode and compress the whole𝑄ℎ into a single feature vector
M0

enc. The decoder can be seen as the reverse of the encoder, which includes a series of convolutional and upsampling layers to extract new featuresM𝑛
dec and

reconstruct a new quadtree𝑄𝑟 that has new tree structure and values. On each decoding level 𝑛, we use convolutions followed by a SoftMax operation to
regress a relative value V𝑛,𝑞rec for each node 𝑞 with respect to its parent node value (therefore the summation of every four child nodes satisfy

∑
𝑞 V

𝑛,𝑞
rec = 1).

Meanwhile, a MLP classifier T𝑛 predicts the type of each decoded node on that level, and sends all the intermediate nodes into the (𝑛 + 1)-th level for further
processing. Finally, the predicted values V𝑛,𝑞rec are converted and merged into the output quadtree𝑄𝑟 . Note that encoding and decoding operations are applied
only to the sparse nodes on each level, which is more computationally efficient compared to the standard CNNs that operate on dense image grids.

6.4 Hierarchical architecture
Our proposed neural architecture (Fig. 4) contains a hierarchical

encoder and decoder, with the skip links in between (Figure 2(c)).

Each hierarchical processing layer represents a corresponding tree

level in the input Qℎ or the output Q𝑟 .

Neural hierarchical quadtree encoder. We take Qℎ as the input

and process the leaves from the bottom (finest) level to the top level.

On each level𝑚, we apply a series S𝑚 of convolutions (Eqn. 12) and

nonlinear ReLU activation functions on the accumulated feature

vectors ®F𝑚,𝑙
. The output feature mapM𝑚

(Eqn. 12) is downsampled

to the (𝑚 − 1)-th quadtree level after the 2 × 2 average pooling P𝑚 ,

and is then fused with the feature mapM𝑚−1
at the (𝑚− 1)-th level.

This iterative encoding can be expressed as:

M𝑚−1
enc

= (P𝑚 (M𝑚),M𝑚−1) (13)

where M𝑚
enc

is the fused feature at level𝑚. In summary, we start

with the bottom tree level𝑚max in Qℎ and combine the features

from every coarser level until reaching the 0-th level (tree root).

Neural hierarchical quadtree decoder. Our goal is to reconstruct a

tree Q𝑟 , which can better represent the target sampling distribution

from hybrid sample inputs. To do so, we design our decoder to not

only regress the output distribution values at each tree level but also

determine if every node needs to be a leaf node or requires further

subdivision. This allows the decoder to simultaneously build a new

tree structure and reconstruct (denoise) leaf values.

The entire decoder can be seen as an inverse process of the en-

coder. After the multi-scale features M𝑚
enc

are hierarchically ex-

tracted from Qℎ via the encoder (Eqn. 13), we apply a series S𝑛 of

convolutions and ReLU activations to compute the featureM𝑛
dec

at

each decoding level 𝑛 (𝑛 = 𝑚 = 0 is the tree root). A 2 × 2 upsam-

pling layer U𝑛 on level 𝑛 is also applied, subdividing a node into

four equal-sized children, which reverses the operation of average

pooling P𝑚 in the encoder when𝑚 = 𝑛.

In order to obtain the final outputs, we apply final layers S𝑛 to

regress the distribution values and T𝑛 to classify node types. In

particular, T𝑛 on level 𝑛 predicts the type of each decoded node

𝑞, outputting the probability 𝑝
𝑛,𝑞

leaf
of the node being a leaf node.

During inference, when 𝑝
𝑛,𝑞

leaf
> 0.5 then the node is decoded as

a leaf node, otherwise (𝑝
𝑛,𝑞

leaf
< 0.5) the current node is split into

four children nodes in the next tree level. R𝑛 is applied to regress a

relative distribution value V
𝑛,𝑞
rec

for each node 𝑞 to its parent node at

each level 𝑛; we apply the SoftMax in R𝑛 to output the final relative

values, ensuring

∑
𝑞 V

𝑛,𝑞
rec

= 1 for the four child nodes. This whole

iterative decoding process is written as:

M𝑛+1
dec

= S𝑛 (U𝑛 (M𝑛
dec

),M𝑛+1
enc

);
V
𝑛,𝑞
rec

= R𝑛 (M𝑛,𝑞

dec
)

𝑝
𝑛,𝑞

leaf
= T𝑛 (M𝑛,𝑞

dec
)

(14)

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:9

Level n (0, 1, 2, …)

Node q Node Type

Classifier

0.1 0.2

0.3 0.4

Level n+1

Level n+1

pn,q
leaf

1 − pn,q
leaf

1/4 1/4

1/4 1/4

Interm. 

Node

0.1 0.2 0.3 0.4

Leaf

1/4 1/4 1/4 1/4

Reconstructed 

Quadtree Qr

Fig. 5. Illustration of the loss computation. After the tree𝑄𝑟 is hierarchically
reconstructed by the network, we compute a loss value for every node 𝑞
at every level 𝑛 from the top to the bottom. We compute the expected
distribution value (Eqn. 16) depending on how probable 𝑝 is a leaf (i.e.,
𝑝leaf) predicted by the node classifier T𝑛 . Note that, when 𝑝 is a leaf, the
corresponding distribution values for the next level are just 1

4
.

Here, S𝑛 takes both the upsampled featureU𝑛 (M𝑛
dec

) at the (𝑛 + 1)-
th level (upsampling increases 𝑛 by one) and the skip-link feature

M𝑛+1
enc

from the same level of the encoder. This skip-link is inspired

by the traditional U-Net [Ronneberger et al. 2015] architecture and

it makes the neural network more robust to spatial size variations

through pooling and upsampling. Without skip links, we have to

decode an entire Q𝑟 from only the last layer featureM0
, which is

much more difficult and can end up having a shallow tree.

In summary, the decoding process starts from the coarsest 0-

th level and gradually builds Q𝑟 until reaching 𝑛max = 20. If all

the nodes are leaves when reaching a level, the decoding process

terminates early. In practice, the input and output tree can have

different numbers of levels. Note that our neural network only

predicts the relative value V
𝑛,𝑞
rec

(= 1 if 𝑞 is the root node) for every

node 𝑞 on every level 𝑛 with respect to its parent node value, and

actual absolute values in the trees are reconstructed by unrolling the

relative values using a series of multiplications. This hierarchical

encoder and decoder architecture efficiently extends U-Net style

CNNs to quadtrees that are naturally more sparse than image grids.

6.5 Loss function
We train the network to output accurate quadtree distributions as

close to the ground-truth quadtrees as possible. The ground-truth

trees are generated in the same way as our input treesQℎ (Sec. 5), by

tracing and accumulating a large number of samples until converged

(more details in Sec. 8). As a result, for each spatial location, we

have its ground-truth quadtree Qgt with node type label 𝛾
𝑛,𝑞

leaf
and

distribution valueV
𝑛,𝑞

gt
for each node. Here,𝛾

𝑛,𝑞

leaf
represents the node

type in the ground-truth tree, which is deterministic and binary.

Therefore, we can supervise our network output 𝑝
𝑛,𝑞

leaf
and V

𝑛,𝑞
rec

with the ground-truth 𝛾
𝑛,𝑞

leaf
and V

𝑛,𝑞

gt
respectively. However, since

the ground-truth tree Qgt is generated using a lot of samples, its

structure can be very deep and fine-grained corresponding to a

high-resolution distribution; enforcing the network to reconstruct

such a deep quadtree structure from sparse input samples is highly

challenging and even unrealistic, especially at the beginning of

rendering. Therefore, we let the network put more emphasis on

regressing accurate distribution values; we seek to allow a different

tree structure as long as its final distribution is close to the ground

truth. To this end, we focus on the expected distribution value for

each node, without directly supervising the tree structure.

Given a parent node 𝑞 and its four potential child nodes 𝑞𝑐 , we

compute the expectation of the distribution value V
𝑛+1,𝑞𝑐
rec

for each

𝑞𝑐 utilizing the node type probability 𝑝
𝑛,𝑞

leaf
of the parent node:

E[V𝑛+1,𝑞𝑐
rec

] = 𝑝
𝑛,𝑞

leaf
· 1
4

+ (1 − 𝑝
𝑛,𝑞

leaf
) · V𝑛+1,𝑞𝑐

rec
. (15)

Note that, our regressed distribution valueV
𝑛+1,𝑞𝑐
rec

is a relative value,

i.e. a ratio of its actual value to its parent node value. If the parent

node 𝑞 is a leaf node, the distribution is assumed uniform inside the

node and thus the corresponding relative value for the same region

of each 𝑞𝑐 is just exactly
1

4
, multiplying 𝑝

𝑛,𝑞

leaf
, which is the relative

distribution value if 𝑞 is a leaf and 𝑞𝑐 does not exist. We propose

to supervise the expected value E[V𝑛+1,𝑞𝑐
rec

] with the ground-truth

value V
𝑛+1,𝑞𝑐
gt

for all children nodes 𝑞𝑐 of 𝑞. This loss is given by:

L
𝑛,𝑞

value
=
∑
𝑞𝑐

∥E[V𝑛+1,𝑞𝑐
rec

] − V𝑛+1,𝑞𝑐
gt

∥
(16)

Similar to the above discussion for Eqn. 15, if the ground-truth node

𝑞 is a leaf (𝛾
𝑛,𝑞

leaf
= 1) and 𝑞𝑐 does not exist, we just use V

𝑛+1,𝑞𝑐
gt

= 1

4
.

This loss (Eqn. 16 with Eqn. 15) jointly supervises the predicted

node type probabilities and the distribution values. However, we

find in our experiments that using this loss only can be unstable in

the early training time. We therefore provide direct supervision for

the tree structure at the beginning of the training, using a binary

cross entropy loss L
𝑛,𝑞

class
that supervises 𝑝

𝑛,𝑞

leaf
with 𝛾

𝑛,𝑞

leaf
. We apply

deep supervisions to every generated tree node output on all the

levels and sum their losses up. Our full loss function is expressed by

L𝑄𝑟
=

𝑛𝑄𝑟∑
𝑛=0

∑
𝑞∈𝑞𝑛

(𝛽L𝑛,𝑞
class

+ L𝑛,𝑞
value

) (17)

where L𝑄𝑟
denotes the loss of the whole reconstructed tree Q𝑟

summed over every node 𝑞 on every decoding level 𝑛. Here, 𝑞𝑛 is

the set of nodes on the 𝑛-th level, 𝑛𝑄𝑟
is the actual maximum de-

coding level, and 𝛽 is a weight factor. During training, we start with

𝛽 = 1 in Eqn. 17 to stabilize the early optimization by supervising

both the structure (with L
class

) and values (with L
value

), and then

gradually reduce 𝛽 to zero. Therefore, eventually, we supervise the

sampling map implicitly using L
value

without forcing the network to

output the same target quadtree structure Qgt (an over-strong regu-

larization and often impossible to achieve). Our neural network can

generalize well to new scenes since it mainly operates on the local

sample input without any strong global scene-level dependency.

7 PATH GUIDING AND RENDERING
We use an iterative algorithm to trace and deposit samples, accu-

mulate the initial quadtrees Qℎ , reconstruct the accurate quadtrees
Q𝑟 as sampling distributions, and use the learned distributions for

rendering the final image. Here, we share a similar design with

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:10 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

3KRWRQ�
DFFXPXODWLRQ

3KRWRQ�WUDFLQJ

3DWK�WUDFLQJ

/HDUQLQJ�
VWDUW

)LQDO�SDVV
UHQGHULQJ

%¸}®i¸�Å}�
�}i®����

3DWK�VDPSOH�
DFFXPXODWLRQ

6DPSOLQJ�
UHFRQVWUXFWLRQ

+LHUDUFKLFDO�
TXDGWUHH�&11

,QLWLDOL]H
VSDWLDO�FDFKLQJ

%XLOG�KHXULVWLF�
TXDGWUHH

5HVHW
TXDGWUHH�
YDOXHV

$GDSWLYH�
VSDWLDO�

VXEGLYLVLRQ

(DUO\�SDVV
UHQGHULQJ

Fig. 6. Illustration of iterative learning and rendering. We show the pipeline
of our path guiding and rendering process (Sec. 7). It starts by building
a coarse grid G, which is later iteratively refined online. We trace a set
of path samples to detect valid spatial voxels in G for storing sampling
distributions, as well as accumulating their input features into per-voxel
quadtrees𝑄ℎ (Eqn. 10); these path samples also contribute radiance to the
rendering result. We then trace photons from the light and deposit them
to the corresponding quadtrees 𝑄ℎ in their arriving spatial voxels. These
accumulated quadtrees𝑄ℎ are adaptively subdivided (Sec. 5) based on the
sample information they accumulate in this iteration. We then send𝑄ℎ to
our neural network and reconstruct accurate quadtrees𝑄𝑟 , which will be
used as sampling distributions to guide the path tracing in the next iteration.
Afterwards, we refine the voxels of the spatial grid G as needed. Before
moving to the next-iteration path tracing, we reset the values in𝑄ℎ to zero,
while retaining their tree structure to continue to accumulate samples and
possibly obtain further refined quadtrees in the next iteration.

many state-of-the-art path guiding works [Müller et al. 2017; Müller

2019; Rath et al. 2020; Zhu et al. 2020b], as presented in Fig. 6.

Spatial caching of the sampling distributions. Weuse a hierarchical

hash grid G [Zhu et al. 2020b] in the scene to receive the hybrid

samples, store the input Qℎ and output Q𝑟 in individual voxels. In

the first iteration, the traced path samples are collected to determine

the bounding box of our spatial grid, which covers the visible part of
the scene. Next, we start from a discrete 3D volume that uniformly

partitions the visible scene space where each voxel is a cube with a

side length RB/𝑟init where RB is the diagonal length of the initial

estimated bounding box; each voxel receives hybrid samples and

builds sampling quadtrees, which can be further sub-partitioned to

a KD-tree as needed. This leads to a hierarchical spatial grid with

per-voxel sampling distributions. Here, each voxel is iteratively

subdivided to a KD-tree based on a simple but effective criterion:

if the total number of samples 𝑁spt within a spatial voxel is larger

than a pre-defined threshold 𝑘spt (i.e., 𝑁spt > 𝑘spt), then we split

the voxel into two sub-voxels through the middle plane along an

alternating dimension. This subdivision is applied recursively to sub-

voxels until all voxels do not satisfy the subdivision criteria, similar

to the strategy proposed by Muller et al. [2017]. Therefore, when a

new sample arrives, we first search within the hierarchical spatial

grid G to find the voxel that covers the sample, then deposit the

sample to its stored quadtree Qℎ (Sec. 5). In practice, we also jitter

the sample across neighboring spatial voxels (similar to depositing

a sample into the angular quadtree in Sec. 5), which creates a spatial

stochastic box filtering as is done in Müller [2019].

Importance sampling from the quadtree. When guiding paths, the

importance sampling of𝜔𝑖 is done by traversing theQ𝑟 from the top

to the bottom similar to [Müller et al. 2017; Rath et al. 2020]. From

the root node of the quadtree, we iteratively sample one from the

four child nodes based on their relative value V
𝑛,𝑞
rec

, until reaching

a leaf node. We then uniformly sample the leaf node. Suppose the

leaf has a solid angle bin Δ𝑧 · Δ𝜙 in the (Z,Φ) space, then the final

sampling PDF corresponds to 𝑝
leaf

= 1/(Δ𝑧 · Δ𝜙).

Iterative sample tracing and rendering. Similar to most of the pre-

vious work [Müller et al. 2017; Rath et al. 2020; Zhu et al. 2020b], we

iteratively trace samples (though our samples are uniquely hybrid)

to refine our quadtrees over time. Specifically, in the 𝑡-th iteration

(𝑡 = 0, 1, 2, ...,T), we trace 2
𝑡
sample-per-pixel (SPP) camera and

light rays; each bounce point of the ray yields a path sample or a

photon, which is deposited into the quadtree in a corresponding

spatial voxel as discussed above. Each spatial voxel stores an in-

put online accumulated quadtree Qℎ and a neurally reconstructed

quadtree Q𝑟 for path guiding. After each iteration, we reconstruct a

newQ𝑟 from the currentQℎ ; the values of the input quadtreeQℎ are

then cleared to zero, and Qℎ continues to accumulate new samples

in the next iteration, while inheriting the same tree structure.

After T iterations, we discontinue learning distributions and

initiate a final pass where we use the most recent reconstructed

quadtrees Q𝑟 from the (T)-th iteration for guiding the rest of the

path samples. Since our approach allows the learning to stop earlier

because of high-quality reconstructed distributions, we can save

more samples for the final-pass rendering. The final rendered image

combines the radiance of all samples from 𝑡 ≥ 2 iterations weighted

by the inverse of their estimated per-pixel variances [Müller 2019].

Combining sampling strategies. The learned guiding sampling is

combined with BSDF sampling via the one-sample MIS (Eqn. 5).

In the iterative process (𝑡 < T), we use 𝛼 = 0.5 for the one-

sample MIS. For the final rendering pass, we follow Zhu et al.

[2020b] to compute the blending coefficient 𝛼 adaptively: 𝛼 =

E𝜔𝑜 ,𝜔𝑖
[𝐿BSDF𝜔𝑜 ,𝜔𝑖

]/(E𝜔𝑜 ,𝜔𝑖
[𝐿BSDF𝜔𝑜 ,𝜔𝑖

]+E𝜔𝑜 ,𝜔𝑖
[𝐿guide𝜔𝑜 ,𝜔𝑖

]). Here, E𝜔𝑜 ,𝜔𝑖
[·]

is the expected radiance sent back to the viewing direction using

one of the two sampling strategies, which is statistically estimated

from the previously traced path samples in past iterations.

8 IMPLEMENTATION
In this section, we discuss some details in dataset generation, neural

network training, and rendering.

Dataset generation. We create a large-scale dataset to train our

neural network. We collect 50 complex indoor and outdoor scenes

either used by researchers in previous papers [Vorba et al. 2014;

Müller et al. 2017; Rath et al. 2020; Bako et al. 2019; Zhu et al. 2020b]

or designed by artists from online resources [Bitterli 2016; Jakob

2010; Evermotion 2012; Trader 2020; Squid 2020; Blend Swap 2016].

Following Zhu et al. [2020a,b], we also add additional procedurally

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:11

Fig. 7. Multiple sets of training scenes, including diverse procedural random
scenes from the previous work [Zhu et al. 2020b] and complex indoor and
outdoor scenes designed by researchers and modeling artists.

generated training scenes, created by combining multiple random-

ized geometry primitives under area lights and environment maps.

We hold out 12 (from the 50) complex scenes as testing scenes to

evaluate our method. The remaining scenes are used for training.

We use the same method (described in Sec. 5) to create the in-

put (noisy) and output (ground-truth) quadtrees, from the training

dataset. In particular, we iteratively emit 2
𝑡
SPP camera and light

rays in iteration 𝑡 ∈ [0,T] to create path and photon samples and

accumulate them in the spatial grid G in the scene, similar to the

rendering process in Sec. 7. We obtain the input quadtrees Qℎ by ac-

cumulating hybrid samples in the spatial voxels at every 𝑡in ∈ [0, 12]
iteration. For every input Qℎ at iteration 𝑡in, we freeze the spatial

cacheG for the following iterations 𝑡 > 𝑡in, continue collecting more

samples and repeatedly refine Qℎ to create the Qgt when reaching

𝑡 = 𝑡gt = 20. When accumulating hybrid samples, we use the BSDF

marginalized variance-aware sampling function (Eqn. 7) for the path

samples, unless otherwise stated in ablation studies (Sec. 9). As for

photons, we simply use their power (Eqn. 8) as the input values.

We also apply additional data augmentation designs to increase

the generalization ability of the neural networks. Since the hierar-

chical hash grid G has KD-trees Bspt containing spatial voxels of

different sizes (Sec. 7), we augment the training data by selecting 10

different initial resolutions 𝑟init equally spaced between 𝑟min

init
= 10

and 𝑟max

init
= 200, which can cover diverse voxel sizes. We also further

augment the input by randomly rotating the global frames.

Neural network training. Our network architecture is designed to

be compact for fast inference in rendering. The maximum number

of feature channels in our neural network is set to be 128. While this

leads to efficient sampling reconstruction, it is still challenging for

such a single network to handle diverse inputs with various num-

bers of input samples or very different sparsity levels. Therefore, we

train five separate versions of the same network as is done in [Zhu

et al. 2020b], where each one only needs to handle the input Qℎ that

contains a certain range of sample numbers (i.e., [0, 100), [100, 500),

[500, 1000), [1000, 5000), [5000,∞)). During both training and test-

ing, we split the set of Qℎ into these smaller groups, and these

networks are executed on GPUs in parallel to reconstruct the set of

Q𝑟 . We train these networks using the ADAM optimizer [Kingma

and Ba 2014] with a learning rate of 1.0 × 10
−4

until convergence.

Rendering. When rendering, we stop learning distributions after

5 ∼ 10 iterations depending on the actual light transport complexity

of each scene, and guide the remaining path samples in the final-

pass rendering. Experiments are rendered on a workstation with

an Intel Core i9-7960X CPU and two Nvidia Titan RTX GPUs re-

quired to run our neural networks. For some simple testing scenes,

one GPU is sufficient. Sample tracing and rendering are performed

on the Mitsuba engine [Jakob 2010]. The neural network is inte-

grated into the rendering engine using the TensorFlow C++ API

with acceleration libraries, and other standard C++/CUDA libraries

for efficient data streaming. To utilize the potential parallelization

between the CPU and GPUs, the CPU keeps ray tracing and ren-

dering the current-pass result using the previously reconstructed

sampling distributions until the GPU finishes computing a new set

of Q𝑟 and updating those distributions. This effectively keeps the

CPU and GPU running busy and staying at high utilization. Our

quadtree-based neural networks are efficient to evaluate. The GPU

processing time is about 6% ∼ 15% (varying across scenes) of the

CPU processing time in our experiments. In the future, implement-

ing our proposed neural path guiding framework into a GPU-based

rendering engine leveraging hardware ray-tracing (e.g., [Parker et al.

2010]) can possibly result in higher efficiency in practice.

9 RESULTS
We present extensive evaluation in this section. Additional experi-

ments can be found in the supplementary material.

Configuration. We evaluate our method on 12 complex testing

scenes, each containing complex global illumination and diverse

geometric variations. When rendering each scene, we limit the

maximum number of bounces to 20; Next Event Estimation (NEE)

is turned off (except for Fig. 3) to clearly show the effectiveness of

path guiding for ours and all comparison methods. We compare

our methods with several traditional online path guiding methods

[Müller et al. 2017; Müller 2019; Rath et al. 2020; Ruppert et al. 2020]

which do not leverage deep learning techniques (CPU-only) but

either use hierarchical quadtrees (similar to ours) or mixture models

as their sampling distribution representation. We also compare with

neural guiding methods, including one [Bako et al. 2019] that can

only guide the first bounce and a recent photon-driven approach

[Zhu et al. 2020b] that can guide multiple bounces; these previous

neural methods represent sampling distributions as regular images.

For quantitative results, we use the standard relative Mean Squared

Error (rMSE) widely used in previous work [Rath et al. 2020; Zhu

et al. 2020b]. All the numbers are computed on tone-mapped LDR

images. In addition, we also show the memory cost of each method.

Qualitative and quantitative comparisons. Figure 8, 9 and 10 show
equal-time comparisons between our method and previous path

guiding methods on various complex (indoor, outdoor, and object)

scenes. Note that, our approach often achieves better qualitative and

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:12 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

Veach Ajar

(14min)

Müller et al. Rath et al.Path Tracer Zhu et al. OursBako et al. Müller [2019] Reference

Full-img (rMSE)
       Memory

0.8868 0.7439 0.0309 0.0257 0.0146 0.0076 0.0014

1.0459 1.0177 0.0536 0.0455 0.0162 0.0076 0.0022
0.5269 0.3635 0.0147 0.0113 0.0049 0.0025 0.0006

0.25 GB 2.01 GB 0.40 GB 1.47 GB 1.28 GB 5.37 GB 1.51 GB

0.5623 0.4198 0.1152 0.0988 0.0658 0.0417 0.0295

0.6939 0.4631 0.1135 0.0943 0.0766 0.0490 0.0352
Full-img (rMSE)

      Memory
0.5745 0.3804 0.1085 0.0896 0.0689 0.0402 0.0300
0.63 GB 2.46 GB 0.80 GB 1.55 GB 1.15 GB 15.27 GB 1.93 GB

Hotel Room

(12min)

0.1970 0.1137 0.0766 0.0594 0.0204 0.0101 0.0058

0.0938 0.0700 0.0522 0.0445 0.0150 0.0119 0.0055
Full-img (rMSE)

       Memory
Bathroom

(4min)

0.0709 0.0507 0.0340 0.0265 0.0098 0.0056 0.0032
0.35 GB 0.85 GB 0.39 GB 0.53 GB 0.54 GB 5.23 GB 0.57 GB

0.0221 0.0110 0.0044

0.0205 0.0153 0.0117
Full-img (rMSE)

       Memory
0.0732 0.0056 0.0034

0.60 GB 9.26 GB 0.86 GB
Kitchen

(3min)

0.1012 0.1050 0.0467 0.0328

0.2812 0.2745 0.0317 0.0331
0.0612 0.0144 0.0115 0.0073

1.12 GB 0.62 GB 0.78 GB 0.81 GB

Ruppert et al.

0.0038
0.0124

0.0107

0.69 GB

0.0459

0.0426

0.0484

0.74 GB

0.0030

0.0053

0.0049

0.48 GB

0.0215

0.0210
0.0083
0.77 GB

Fig. 8. Equal-time comparisons. We compare our method with previous path guiding methods [Müller et al. 2017; Müller 2019; Bako et al. 2019; Rath et al.
2020; Zhu et al. 2020b; Ruppert et al. 2020] on complex indoor scenes. For each scene, we show visual comparisons on two crops with corresponding rMSE
numbers. We also show the rMSE of the full image and the memory usage for all the methods. Our approach often achieves better visual quality and lower
rMSE (on both crops and full images). Our method achieves this with memory cost that is comparable to traditional methods [Müller 2019; Rath et al. 2020]
and much less than the previous neural technique [Zhu et al. 2020b].

quantitative results. Our results of zoomed-in rendering crops are

smoother, showing less noticeable noise than other results, and are

visually closer to the reference. In contrast, the previous first-bounce

guiding method [Bako et al. 2019] cannot handle these challenging

cases very well, although it also leverages deep learning techniques;

it can only improve the primary bounce sampling thus performs

worse than the other guiding methods including the traditional on-

line ones on our testing scenes with strong indirect illumination. The

three traditional methods [Müller et al. 2017; Müller 2019; Rath et al.

2020] use pure path samples as input and reconstruct hierarchical

quadtree distributions online for multi-bounce path guiding. They

achieve effective path guiding and improve over the standard path

tracing; in particular, Rath et al. [2020] shows clear advantages over

the other two because of its more efficient variance-aware sampling

distribution. Other than the quadtree, Ruppert et al. [2020] leverages

mixture models (VMMs) to fit path samples by an online adaptive

optimization framework, which outperforms many other techniques

due to the careful positioning of mixture components and a novel

parallax compensation module. However, these methods still lever-

age a slow online learning process, requiring a large number of path

samples and many iterations to achieve accurate distributions for

path guiding. The recent photon-driven neural method [Zhu et al.

2020b] uses a pre-trained network to relieve this slow online learn-

ing, leading to better results. However, this technique [Zhu et al.

2020b] (same to [Bako et al. 2019]) can only reconstruct sampling

distributions as regular 2D images (unlike quadtress) that have a

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:13

Caustics Egg

(4min)

Müller et al. Rath et al.Path Tracer Zhu et al. OursBako et al. Müller [2019] Reference

Full-img (rMSE)
       Memory

0.6473 0.0856 0.0199 0.0075 0.0061 0.0033 0.0008

0.5526 0.2993 0.0647 0.0418 0.0287 0.0094 0.0062
0.3384 0.1480 0.0276 0.0155 0.0125 0.0048 0.0027

0.05 GB 0.55 GB 0.10 GB 0.60 GB 0.40 GB 2.61 GB 0.64 GB

0.2987 0.2705 0.2610 0.2202 0.1734 0.1081 0.0336

0.5267 0.5192 0.3045 0.1340 0.1909 0.0319 0.0140
Full-img (rMSE)

       Memory
0.2734 0.1242 0.0952 0.0608 0.0665 0.0224 0.0080

0.22 GB 0.66 GB 0.23 GB 0.26 GB 0.24 GB 4.25 GB 0.38 GB

Spaceship

(2min)

0.0418 0.0070 0.0051 0.0052 0.0009 0.0014 0.0003

0.06680.0699 0.0101 0.0096 0.0029 0.0016 0.0006
Full-img (rMSE)

       Memory
0.1099 0.0464 0.0037 0.0034 0.0015 0.0010 0.0006

0.76 GB 1.67 GB 0.78 GB 1.18 GB 1.16 GB 3.81 GB 1.21 GB
Pool

(4min)

0.0031

0.0327
0.0072

0.27 GB

Ruppert et al.

0.0828

0.0868
0.0287

0.31 GB

0.0014

0.0038
0.0012

0.78 GB

Fig. 9. Equal-time comparisons. Similar to Fig. 8, we show more equal-time comparisons between our method and previous path guiding methods [Müller
et al. 2017; Müller 2019; Bako et al. 2019; Rath et al. 2020; Zhu et al. 2020b; Ruppert et al. 2020]. Our method can also achieve better qualitative and quantitative
results using moderate memory costs.

fixed low resolution, hence restricting the accuracy and efficiency

of sampling. Our approach instead directly regresses hierarchical

quadtrees from hybrid samples for sampling and can represent more

fine-grained distributions under different light transport conditions.

As a result, our approach further outperforms [Zhu et al. 2020b].

We achieve better rendering quality without a large memory

overhead; the sparseness of our representation and the effectiveness

of our neural reconstruction lead to high memory-efficiency. The

recent neural technique [Zhu et al. 2020b] requires much larger

memory due to the use of grid representation (image). For most

scenes, our memory consumption is comparable to the traditional

methods [Müller 2019; Rath et al. 2020] without deep learning.

Hybrid samples. To further demonstrate the effectiveness of using

hybrid samples, comparisons on two extreme light transport settings

are shown in Fig. 3 earlier in the paper. These two Cornell Box

scenes are specifically designed to make only one type of the input

samples (either paths or photons) useful. Previous methods that use

either path samples or photon samples cannot work effectively on

both challenging cases. In contrast, our approach uses a hybrid of

both path samples and photons with a novel hierarchical neural

reconstruction, leading to more robust rendering on both cases. Our

neural network learns to correlate the information and convert it

into a single high-quality hierarchical sampling distribution. As

demonstrated in other results of complex scenes (Fig. 1, 8 and 9),

our proposed framework with hybrid input can robustly work well

across various challenging light transport cases.

Convergence. We also evaluate how our method performs with an

increasing number of samples. In particular, we run our method on

two testing scenes (Racing Car and Kitchen, shown in Fig. 1 and 8)

with different total numbers of traced rays (including both camera

and light rays) per pixel and compare the rMSEs with other methods

using the same budgets of sampling rays. The results are shown in

Fig. 11. We can see that our novel neural path guiding approach

consistently achieves lower errors with more samples; ours also has

smaller errors compared to previous methods. Note that, while the

recent neural method [Zhu et al. 2020b] can often achieve better

results than the other traditional methods with a moderate sampling

budget, its gain gets reduced with very large sampling budgets due

to the fixed resolution sampling map which intrinsically cannot

express the high-frequency lighting perfectly. On the other hand,

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:14 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

Rath et al. Zhu et al. OursMüller [2019] Reference

0.1837 0.1607 0.0884 0.0450

0.0489 0.0333 0.0317 0.0170
Sauna

(8min)

Full-img (rMSE)
       Memory

0.0476 0.0371 0.0195 0.0141
0.95 GB 0.86 GB 6.89 GB 0.91 GB

0.6416 0.6892 0.2648 0.1029

0.5584 0.5760 0.3318 0.1254

Full-img (rMSE)
       Memory

0.4869 0.5043 0.1633 0.0849
0.23 GB 0.22 GB 7.03 GB 0.48 GB

Light Maze

(3min)

Ruppert et al.

0.0873

0.0333

0.0324
0.49 GB

Rath et al. Zhu et al. OursMüller [2019] ReferenceRuppert et al.

0.1652

0.2777

0.1107
0.15 GB

Fig. 10. Equal-time comparisons with some best performing baseline methods [Müller 2019; Rath et al. 2020; Ruppert et al. 2020] on two complex-visibility
scenes. The incident radiance fields of these scenes contain high-frequency details and repeated patterns. We can still achieve better results in such light
transport scenarios.

KitchenRacing Car

Fig. 11. Convergence curves of two testing scenes (from 256 SPP to 16,384
SPP). We compare our approach with previous methods using different
numbers of samples. The sampling budget represents the total number of
rays (including both camera and light) per pixel through the entire guiding
and rendering process. Both the X (number of samples) and Y (rMSE) axes
are on a logarithmic scale. Our hierarchical neural path guiding performs
consistently better with the increasing samples on these two scenes. Because
some rays are used for guiding and the convergence is influenced by the
quality of the guiding distribution, these curves are not straight lines, as
expected for standard path tracing in a log-log plot. Also note that, the
recent previous neural method [Zhu et al. 2020b] may not be more effective
than the traditional methods when using a very large number of samples.

traditional quadtree-based methods [Müller et al. 2017; Müller 2019;

Rath et al. 2020] can be more fine-grained with a large number of

samples, leading to better results eventually. This example illustrates

the benefits of having a hierarchical representation. Our approach

successfully applies hierarchical quadtree-based sampling in neural

path guiding, leading to efficient rendering.

Hierarchical reconstruction. We show some examples of the re-

constructed sampling distributions in Fig. 3 and 13. Our regressed

quadtree distributions are accurate and fine-grained, and are close

to the reference. In contrast, [Rath et al. 2020] is reconstructing the

same target distribution as ours, but it leverages traditional online

accumulation, which often obtains more noisy quadtrees. Essen-

tially, our neural network is trained to denoise such noisy online-

accumulated quadtrees into the smooth and accurate quadtrees. On

the other hand, the neural techniques [Zhu et al. 2020b] that use

uniform grids (images) as the sampling representation can also re-

construct smooth sampling distributions. However, because of the

Müller [2019] Rath et al. OursOurs-noVar

Reference

0.2324 0.1044 0.2095 0.0715

0.0397 0.0214 0.0165 0.0093
rMSE 0.1047 0.0525 0.0890 0.0322

La
nt

er
ns

 (3
m

in
)

Fig. 12. Target sampling distribution. Our approach by default uses the
variance-aware sampling function (Eqn. 7) as the target to train the network.
We can also use a simpler target sampling distribution (Eqn. 4) without
variance-awareness. We compare this with our default model and also
traditional methods using the two different sampling functions. Our full
model performs better, which justifies the variance-aware technique and
necessity of using an advanced target distribution for training.

limited image resolution, their sampling is less sharp and detailed

compared to our reconstructed quadtrees.

We further investigate the benefits of using the hierarchical net-

work, by training and comparing with a network that regresses 2D

images from hybrid samples without any hierarchical structure. In

particular, we use the recent network architecture of [Zhu et al.

2020b] and train it using the same hybrid samples as input and

the same variance-aware target distribution for path guiding. The

corresponding results compared with the results of our full model

and other methods are shown in Fig. 13, with corresponding sam-

pling distributions. This non-hierarchical network with the image

representation performs worse than our full model. Meanwhile, our

reconstructed hierarchical distribution contains more details and

is faster to compute than the uniform image representation, which

leads to more efficient path guiding and better rendering quality.

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples • 35:15

0.1312
Müller et al. [2017] Müller [2019] Rath et al. [2020]Reference Zhu et al. [2020] Ours-img Ours

0.1129 0.0928 0.0674 0.0516 0.0421rMSEMetals (4min)

Fig. 13. Hierarchical reconstruction. We compare with previous methods and show the corresponding sampling distributions of all methods for a scene point
(marked by the red point in the reference). Similar to Fig. 3, the ground-truth sample distribution is with respect to our method and [Rath et al. 2020] (and also
the "Ours-img" variant). We also compare with a non-hierarchical variant (labeled with Ours-img) that takes hybrid samples as input but regresses image grid
distributions using the same network architecture as [Zhu et al. 2020b]. Our full model leverages hierarchical reconstruction to regress accurate sampling
distributions and achieve better results compared to its non-hierarchical counterpart.

Target sampling distribution. Our framework has good flexibility;

it can support various target sampling distributions. By default, we

use the recent variance-aware function [Rath et al. 2020] (Eqn. 7) for

the better performance. In Fig. 12, we show results from a variant

of our model trained with the traditional target sampling function

without variance-awareness (Eqn. 7 as is used in [Müller et al. 2017;

Müller 2019]). Note that, our approach still works well even with-

out the variance-aware technique, and can still outperform many

previous methods. Our full model can achieve better results, taking

advantage of the advanced target sampling function.

Limitations. Our approach leverages path and photon samples

and treats them equally, tracing the same number of rays for each

type of sample in guiding and rendering. However, the two types

of samples often do not contribute equally to the final distribution

(as in Fig. 3) and one of them can be less useful, which is a waste

of sampling budget. Addressing this may require future research

to support distributing the samples non-equally, adaptive to the

actual light transport cases. Besides, we believe guiding the photon

emission and tracing properly (e.g., [Vorba et al. 2014]) can be very

useful to our framework, which reduces the well-known photon

visibility issue and further increases the robustness of our approach.

Our framework utilizes discrete voxels to partition the scene and

cache the sampling distributions. Similar to previous methods that

use similar caching techniques [Müller et al. 2017; Zhu et al. 2020b],

this spatial structure can have discontinuous sampling distributions

across neighboring voxels, leading to some aliasing artifacts that

are usually gone after a number of iterations. While our neural

framework accelerates the convergence of sampling reconstruction,

which alleviates this issue to some extent, some minor artifacts

can still appear in early iterations. Exploring an idea similar to the

parallax compensation [Ruppert et al. 2020] is left for future work.

Currently, we implement our approach in a hybrid CPU and

GPU fashion where tracing/shading and sampling reconstruction

are executed separately. The extra data copying overhead is still

non-negligible even if we carefully manage the data flow and paral-

lelization. In practice, it can be beneficial to put more modules on

GPUs directly and make use of the specialized processor cores.

10 CONCLUSION AND FUTURE WORK
In this paper, we present a novel path guiding framework that

is learning-based, hierarchical and hybrid. We present an unique

neural network that extends traditional CNNs to hierarchical rep-

resentations, and produces accurate sampling distributions faster

than traditional online accumulation methods. Our approach fur-

ther uses a hybrid of path samples and photons as input, allowing

for increased robustness and generality across different complex

light transport scenarios. We demonstrate extensive experiments on

diverse testing scenes. Our proposed neural path guiding framework

can achieve the state-of-the-art rendering quality with a reasonably

small memory cost compared to other existing approaches.

Our approach also inspires interesting future research. In this

work, we focus on making the local directional distribution recon-

struction neural and hierarchical. Future work can explore if the

spatial caching grid can also be hierarchically reconstructed via a

neural network, potentially making local distribution reconstruc-

tion aware of the global context. Another interesting direction is

to combine our offline neural framework with the online neural

techniques [Müller et al. 2019, 2020] that regress a global and con-

tinuous sampling function. Meanwhile, combining with the adjoint

Russian roulette and splitting technique [Vorba and Křivánek 2016]

and extending our framework to product sampling can be the direct

next steps. Our approach leverages quadtree-based neural modeling

for local light field approximation; this technique can also inspire

other related research areas in computer graphics, such as lighting

estimation and light transport acquisition.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants 1703957 and 1764078,

Google Ph.D. Fellowships, the Ronald L. Graham Chair and the UC

San Diego Center for Visual Computing.

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.



35:16 • Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi

REFERENCES
Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. 2019. Offline Deep Importance

Sampling for Monte Carlo Path Tracing. In Computer Graphics Forum, Vol. 38. Wiley

Online Library, 527–542.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-

lutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4
(2017), 97–1.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

LLC Blend Swap. 2016. Blend swap.

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-

tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 1–12.

Kashyap Chitta, Jose M Alvarez, and Martial Hebert. 2020. Quadtree Generating

Networks: Efficient Hierarchical Scene Parsing with Sparse Convolutions. In The
IEEE Winter Conference on Applications of Computer Vision.

Stavros Diolatzis, Adrien Gruson, Wenzel Jakob, Derek Nowrouzezahrai, and George

Drettakis. 2020. Practical Product Path Guiding Using Linearly Transformed Cosines.

In Computer Graphics Forum, Vol. 39. Wiley Online Library, 23–33.

TM Evermotion. 2012. Evermotion 3d models.

Iliyan Georgiev, Jaroslav Krivánek, Tomas Davidovic, and Philipp Slusallek. 2012. Light

transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6
(2012), 192–1.

Ben Graham. 2015. Sparse 3D convolutional neural networks. arXiv preprint
arXiv:1505.02890 (2015).

Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 2018. 3d semantic

segmentation with submanifold sparse convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 9224–9232.

Benjamin Graham and Laurens van der Maaten. 2017. Submanifold sparse convolutional

networks. arXiv preprint arXiv:1706.01307 (2017).

Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space

path guiding. In Eurographics Symposium on Rendering, Vol. 2018. The Eurographics
Association, 73–82.

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive photon

mapping. In ACM SIGGRAPH Asia 2008 papers. 1–8.
Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space

extension for robust light transport simulation. ACM Transactions on Graphics (TOG)
31, 6 (2012), 1–10.

Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016.

Product importance sampling for light transport path guiding. In Computer Graphics
Forum, Vol. 35. Wiley Online Library, 67–77.

Yuchi Huo, Rui Wang, Ruzahng Zheng, Hualin Xu, Hujun Bao, and Sung-Eui Yoon.

2020. Adaptive Incident Radiance Field Sampling and Reconstruction Using Deep

Reinforcement Learning. ACM Transactions on Graphics (TOG) 39, 1 (2020), 1–17.
Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In

Eurographics Workshop on Rendering Techniques. Springer, 326–335.
Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering

Techniques’ 96. Springer, 21–30.
James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual

conference on Computer graphics and interactive techniques. 143–150.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 (2014).
Claude Knaus and Matthias Zwicker. 2011. Progressive photon mapping: A probabilistic

approach. ACM Transactions on Graphics (TOG) 30, 3 (2011), 25.
Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek

Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in

volumetric light transport simulation. ACM Transactions on Graphics (TOG) 33, 4
(2014), 1–13.

Pradeep Kumar Jayaraman, JianhanMei, Jianfei Cai, and Jianmin Zheng. 2018. Quadtree

convolutional neural networks. In Proceedings of the European Conference on Com-
puter Vision (ECCV). 546–561.

Eric P Lafortune and Yves D Willems. 1993. Bi-directional path tracing. (1993).

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.

2017. Grass: Generative recursive autoencoders for shape structures. ACM Transac-
tions on Graphics (TOG) 36, 4 (2017), 1–14.

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,

Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2019. Grains:

Generative recursive autoencoders for indoor scenes. ACM Transactions on Graphics
(TOG) 38, 2 (2019), 1–16.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J Mitra, and Leonidas J

Guibas. 2019. StructureNet: hierarchical graph networks for 3D shape generation.

ACM Transactions on Graphics (TOG) 38, 6 (2019), 242.

Thomas Müller. 2019. “Practical Path Guiding” in Production. In ACM SIGGRAPH
Courses: Path Guiding in Production, Chapter 10. ACM, New York, NY, USA, 18:35–

18:48. https://doi.org/10.1145/3305366.3328091

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient

light-transport simulation. In Computer Graphics Forum, Vol. 36. Wiley Online

Library, 91–100.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

2019. Neural importance sampling. ACM Transactions on Graphics (TOG) 38, 5
(2019), 1–19.

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural

control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–19.
Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,

David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,

et al. 2010. OptiX: a general purpose ray tracing engine. Acm transactions on graphics
(tog) 29, 4 (2010), 1–13.

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek,

and Jaroslav Křivánek. 2020. Variance-Aware Path Guiding. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2020) 39, 4 (July 2020), 151:1–151:12. https:

//doi.org/10.1145/3386569.3392441

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet: Learning deep

3d representations at high resolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 3577–3586.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241.

Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. 2020. Robust Fitting of

Parallax-Aware Mixtures for Path Guiding. ACM Transactions on Graphics (TOG)
(2020).

Peter Shirley, Bretton Wade, Philip M Hubbard, David Zareski, Bruce Walter, and

Donald P Greenberg. 1995. Global illumination via density-estimation. In Rendering
Techniques’ 95. Springer, 219–230.

Turbo Squid. 2020. 3D Models, Plugins, Textures, and more at Turbo Squid.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree generating

networks: Efficient convolutional architectures for high-resolution 3d outputs. In

Proceedings of the IEEE International Conference on Computer Vision. 2088–2096.
CG Trader. 2020. Cg trader. URL http://www. cgtrader. com 4 (2020).

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610.
Stanford University PhD thesis.

Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In

Photorealistic Rendering Techniques. Springer, 145–167.
Eric Veach and Leonidas J Guibas. 1995b. Optimally combining sampling techniques for

Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. 419–428.

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David

Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and

asymmetric loss functions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–15.
Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and

Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH Courses.
ACM, New York, NY, USA, 18:1–18:77. https://doi.org/10.1145/3305366.3328091

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.

On-line learning of parametric mixture models for light transport simulation. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 1–11.

Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-driven Russian roulette and splitting in

light transport simulation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–11.
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-

CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM
Transactions on Graphics (SIGGRAPH) 36, 4 (2017).

Peng-Shuai Wang, Yang Liu, and Xin Tong. 2020. Deep Octree-based CNNs with

Output-Guided Skip Connections for 3D Shape and Scene Completion. Computer
Vision and Pattern Recognition (CVPR) Workshops.

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018. Adaptive O-CNN: A

Patch-based Deep Representation of 3D Shapes. ACM Transactions on Graphics
(SIGGRAPH Asia) 37, 6 (2018).

Quan Zheng and Matthias Zwicker. 2019. Learning to importance sample in primary

sample space. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 169–179.

Shilin Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2020a.

Deep Kernel Density Estimation for Photon Mapping. In Computer Graphics Forum,

Vol. 39. Wiley-Blackwell.

Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov,MarkMeyer, HenrikWann

Jensen, Hao Su, and Ravi Ramamoorthi. 2020b. Photon-Driven Neural Path Guiding.

arXiv preprint arXiv:2010.01775 (2020).

ACM Trans. Graph., Vol. 40, No. 4, Article 35. Publication date: August 2021.

https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3386569.3392441
https://doi.org/10.1145/3386569.3392441
https://doi.org/10.1145/3305366.3328091

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Overview
	5 Hierarchical Structure for Hybrid Samples
	6 Neural Reconstruction of Sampling Distributions
	6.1 Motivation of neural reconstruction framework
	6.2 Input hybrid samples
	6.3 Convolution on a quadtree
	6.4 Hierarchical architecture
	6.5 Loss function

	7 Path Guiding and Rendering
	8 Implementation
	9 Results
	10 Conclusion and future work
	Acknowledgments
	References

