
This paper appeared in Proceedings of Graphics Interface ’96, pages 116-121,
1996

Rendering Caustics on Non-Lambertian
Surfaces

Henrik Wann Jensen

Department of Graphical Communication
The Technical University of Denmark

hwj@gk.dtu.dk, http://www.gk.dtu.dk/~hwj

Abstract

This paper presents a new technique for rendering caustics on non-
Lambertian surfaces. The method is based on an extension of the
photon map which removes previous restrictions limiting the usage to
Lambertian surfaces. We add information about the incoming direc-
tion to the photons and this allows us to combine the photon map with
arbitrary reflectance functions. Furthermore we introduce balancing
of the photon map which not only reduces the memory requirements
but also significantly reduces the rendering time. We have used the
method to render caustics on surfaces with reflectance functions vary-
ing from Lambertian to glossy specular.

Keywords: Caustics, Photon Map, Ray Tracing, Rendering.

1 Introduction

Caustics provides some of the most spectacular patterns of light in nature.
Caustics are formed when light reflected from or transmitted through a spec-
ular surfaces strikes a diffuse surface. An example is the caustic formed as
light shines through a glass of wine onto a table.

In traditional ray tracing [22] diffuse surfaces are only illuminated by the
light sources. Caustics which are indirect illumination on the diffuse surfaces
are not rendered at all. Even the stochastic ray tracing methods [5, 8] cannot

1

render caustics properly. In order to integrate the computation of caustics
into ray tracing it is necessary to compute illumination from light transmitted
via specular surfaces. This computation is in most situations very complex
and it has been solved only for a simple class of specular objects (ie. polygons
[20]). Mitchell et al. [12] has presented a very comprehensive technique and
their method is capable of handling caustics from implicit surfaces. The
method is unfortunately very complex and also very time consuming.

Arvo [1] extended the standard ray tracing algorithm by introducing a
preprocessing step in which caustics are computed. This preprocessing step
uses backward ray tracing (also known as light ray tracing, illumination ray
tracing and photon tracing) in which packets of energy (photons) are emit-
ted from the light sources in the scene towards the specular surfaces. Each
photon is reflected by the specular surfaces and stored on the Lambertian
surfaces. The main problem with this approach is computing the intensity
(radiance) of the caustics. This value depends upon the number of photons
per surface area. Arvo solved this problem by using illumination maps which
is an empty texture map divided into a large number of small area-elements.
As photons hit a surface the energy is registered at the appropriate area-
elements. In this way the caustics are created as textures on the Lambertian
surfaces within the scene. A problem with this approach is the fact that
a large number of photons must be used to eliminate noise in the caustics.
Heckbert [7] introduced a method that adaptively subdivided the illumina-
tion map into area elements (rexes) with a size corresponding to the local
density of the photon-hits. Chen et al. [3] and Collins [4] use a fixed illumi-
nation map. To eliminate noise they use different filter-kernels to spread the
energy from each photon onto several area-elements. Jensen et al. [9] stored
all photon-hits explicitly in a photon map and avoided using the illumination
map. Instead they introduced a new technique for estimating the number of
photons per area by looking only on the distribution of photons within the
scene. Their method is capable of handling complex objects (ie. procedurally
defined objects) and the estimate is less prone to noise since it can be seen
as a low-pass filter. The photon map does however require large amounts of
memory in complex scenes.

In scenes with simple objects it is possible to avoid the photon based
approach. If the specular objects are polyhedral backwards beam tracing
[14, 15, 21] can be used to render caustics on the Lambertian surfaces. With
backwards beam tracing the illumination map can be replaced by caustic
polygons that represent illumination from caustics on Lambertian surfaces.

2

In bidirectional path tracing [11, 18] the rendering of caustics is signif-
icantly improved compared to traditional path tracing [8]. The method is
however still purely stochastic and it still requires a large amount of sample
rays to produce results that are not too noisy.

The most popular techniques today are clearly the backward ray tracing
techniques as introduced by Arvo. These methods are often faster and more
general than other approaches and they are often used in global illumina-
tion techniques [3, 9, 16] to render caustics. They do unfortunately have
one significant drawback - they are limited to Lambertian surfaces. In many
situations this is not a problem. However, within global illumination where
accurate rendering is important the Lambertian assumption does not always
produces satisfying results. It is however difficult to eliminate the Lamber-
tian assumption since it removes the view independence of the caustics and
therefore complicates the storage of irradiance on the surfaces.

In this paper we present a technique in which we extend the photon
map in order to store irradiance on surfaces with reflection functions that
are non-Lambertian. We achieve this by extending the information stored
with each photon with the incoming direction of the photon. This allows
us to combine the photons with general bidirectional reflectance distribution
functions. We present results which demonstrate rendering of caustics on
surfaces with reflection functions ranging from Lambertian to almost glossy
specular.

2 The Photon Map

The photon map represents a rough distribution of light throughout the
scene. It is created by emitting a large number of photons from the light
sources into the scene. In [9] the photon map is used not only to simulate
caustics but all kinds of illumination. We are only interested in caustics and
we therefore construct a caustics photon map specifically aimed at rendering
caustics.

The caustics photon map is constructed by emitting a large number of
photons towards all the specular objects within the scene. Each time a
photon hits a surface two things happen. If the surface is diffuse the photon
is stored in the photon map, and if the surface has a specular component
Russian roulette is used to determine whether the photon should be reflected
specularly or absorbed. In this way we obtain an unbiased solution without

3

have to trace each photon through an infinite number of specular reflections.
Every photon is stored within the photon map. As [9] we use a kd-tree

[2] to store the photons. While rendering the scene we need a data-structure
that allows us to quickly locate photons within a given volume. Furthermore
we need a very compact data-structure since we want to be able to use
millions of photons. This makes the kd-tree a natural choice. In [9] the
kd-tree was build on the fly as photons intersected the surfaces within the
scene. This strategy can very easily result in a skew kd-tree that no longer
has optimal search times. Searching is performed very often during rendering
and we have found that balancing the kd-tree before actually rendering the
scene significantly reduces the rendering time in most scenes. The balancing
algorithm is performed after all the photons have been emitted. The photons
are stored in a linked list of large arrays (each array having 65536 photons).
The balancing algorithm manipulates this data structure directly in order
to avoid having two copies of the photon map in memory. The balancing
algorithm converts the unordered list of photons into a balanced kd-tree
by recursively selecting the root node among the data-set as the median
element in the direction which represents the largest interval. The existing
data structure can be reused since we use a heap structure to represent
the balanced tree. This completely eliminates the need for child-pointers.
Further information on how to balance kd-trees can be found in [2].

As mentioned a large number of photons might be used in the photon
map and it is necessary to use a compact representation. We have decided
to use the following representation in which each photon only uses 20 bytes:

struct photon {

float position[3];

rgbe energy;

char theta,phi; // incoming direction

short flags;

}

This representation is actually more compact than the one presented in [9]
even though we have added information about the incoming direction. The
use of a heap-like data-structure eliminates the need of two child pointers
which would otherwise increase the memory requirements for each photon
with 8 bytes (40%). The energy is represented as 3 floats packed into 4 bytes
using the technique described in [19].

4

3 Rendering Caustics with the Photon Map

In standard ray tracing diffuse surfaces are only illuminated by the light
sources. By introducing the photon map we have photons representing energy
from caustics deposited on these diffuse surfaces. To render the caustics we
need to extract radiance information from the photon map. This means that
we must compute the density of the photons on all area-elements within the
scene. Assuming that we have an intersection point x with normal �n and
an outgoing direction Ψr in which we want to compute the radiance, Lr, by
using the photon map. Lr can be expressed as

Lr(x,Ψr) =
∫

all Ψi

fr(x,Ψr,Ψi)Li(x,Ψi)|�n ·Ψi| dωi (1)

where Li is the incoming radiance from the direction Ψi, and fr is the bidi-
rectional reflectance distribution function.

To compute the contribution Li we locate theN photons with the shortest
distance to x. If we assume that each photon p represents a packet of energy
(flux) ∆Φp arriving at x from direction Ψi,p then it is possible to integrate
the information into equation 1 as follows

Lr(x,Ψr) =
∫

all Ψi

fr(x,Ψr,Ψi)
d2Φi(x,Ψi)

dAdωi
dωi

≈
N∑
p=1

fr(x,Ψr,Ψi,p)
∆Φp(x,Ψi,p)

∆A
(2)

We use the same approximation of ∆A as [9]. That is we take a sphere
centered at x and expand it until it contains N photons and has radius r.
∆A is then approximated as

∆A = πr2 (3)

and we can rewrite equation 2 as

Lr(x,Ψr) ≈
1

πr2

N∑
p=1

fr(x,Ψr,Ψi,p)∆Φp(x,Ψi,p) (4)

5

4 A Non-Lambertian Reflection Model

In order to test the algorithm we need a reflection model capable of simula-
ting non-Lambertian reflection. Several comprehensive models exists for the
purpose of accurately simulating the physical behavior of different materials.
However we are only interested in a simple model that can be used to validate
our algorithm. A suitable model was presented by Schlick in [13]. This model
is simple and it has the very nice property that it provides a continuous
transition from Lambertian reflection to glossy specular reflection. We omit
the usage of anisotropic reflection (even though nothing in our model prevents
us from simulating anisotropy) and use the following BRDF:

fr =
1−G(v)G(v′)

π
+
G(v)G(v′)

4πvv′

(
α

(1 + αt2 − t2)2

)
(5)

where the function G represents a geometrical self-shadowing factor:

G(v) =
v

α− αv + v
(6)

and t = �n·(Ψr+Ψi)
|�n·(Ψr+Ψi)|

, v = �n ·Ψr, v′ = �n ·Ψi and α is the diffuse-specular factor

varying from 1 (diffuse) to 0 (specular).
To test our algorithm with this reflection model we only have to modify

one parameter, α. This value determines whether the surface is diffuse or
specular. Our results in the following section refers to this value as the
diffuse-specular component.

5 Results and Discussion

We have implemented and tested our rendering algorithm on a Silicon Gra-
phics Onyx computer with 1GB RAM. Since our representation of the photon
map is quite memory efficient we never needed the 1GB memory. In general
we rendered caustics using approx. 5-10MB for the photon map. Only in
extreme cases where the caustic is rendered on surfaces with a reflection
function approaching glossy specular did we need a large number of photons.
In these cases we used approx. 10-30MB of memory for the photon map.

Our first test case is shown in figure 1. This is the standard model
used to illustrate caustics. The cardioid-shaped caustic is formed by placing
a light source on the edge of a cylinder which has a reflective inner side.

6

The incoming direction of the light at the edge of the cardioid equals the
tangent to the cardioid. This information is quite useful when we remove the
Lambertian assumption from the receiving surface. It allows us to predict
how the caustic should look as the surface becomes more glossy. Figure 1
contains 4 rendered images showing how the caustic looks as we change the
diffuse-specular component of the surface from 1 to 0.01. As expected the
intensity of the caustic is reduced mostly in those parts where the incoming
direction of the light differs mostly from the incoming direction of the viewing
ray. We used approx. 340.000 photons in all the images corresponding to 7
MB of memory. The quality of the images can be improved slightly by using
more photons. The images have been rendered in 320x240 with 4 samples per
pixel and the rendering time for the images was (from left to right) 22, 24, 27
and 42 seconds - just ray tracing the images takes 7 seconds. The rendering
time increases as the surface becomes more glossy and the only reason for this
is the fact that the image sampling algorithm requires more rays to render
the caustic on the glossy surface. Using a fixed number of samples per pixel
would make the rendering time the same for all the images.

Our second test case (figure 2) is a simple scene demonstrating what
happens with the caustic from a glass sphere as the receiving surfaces become
glossy. As we can see the shape of the caustics is no longer oval but curved.
In this scene we had to use approx. 250.000 photons to obtain a nice caustic
— using fewer photons makes the caustic look more blurred. The image was
rendered in 640x480 with 4 samples per pixel and the rendering time was 182
seconds.

Our third test case (figure 3) is a more complex scene in which we bene-
fited from usage of a non-Lambertian reflection model. It is a glass of cognac
on a sand-surface. The sand is a fractal surface (with 2 · 10242 triangles) on
which we have produced a synthetic sand-texture. We have used a diffuse-
specular factor of 0.6 - using a Lambertian approximation makes the sand
look more unnatural and flat. The caustic in this image was rendered using
approx. 350.000 photons. The image was rendered in 26 minutes in the reso-
lution 640x480 with 4 samples per pixel. Notice how the red-looking caustic
is formed as light is transmitted through several layers of glass and cognac.
The intensity of each photon is modified using Beer’s law as the photon is
transmitted through a dielectric media.

In the following table we have collected some statistics of the resources
required to render the images:

7

Image Photons Preprocess Rendering
Figure 1a 336.191 8 min. 22-42 s.
Figure 2 250.677 58 s. 182 s.
Figure 2b 250.677 58 s. 378 s.
Figure 2c 5.036.126 19 min. 276 s.
Figure 2d 5.036.126 19 min. 1380 s.
Figure 3 352.497 15 min. 26 min.
Figure 3e 352.497 15 min. 42 min.
a Applies to all images in figure 1
b Without balancing the photon map
c A reference image demonstrating how the ren-
dering time is (un)affected by the number of
photons used

d The same as 2c but with an unbalanced pho-
ton map

e Without balancing the photon map

As shown in the table we also rendered figure 2 and figure 3 without
balancing the photon map and this clearly affected the rendering times in
particular as the number of photons increased. The rendering times were
almost doubled with the unbalanced version. We also examined how the
rendering times were affected as more photons were added and we rendered
figure 2 using 5.0 million photons corresponding to a data-structure of al-
most 100 MB. Naturally this increased the preprocessing time due to the
extra photons emitted from the light source. The time used in the balancing
algorithm were less than a minute. As we can see from the table the balan-
cing algorithm reduces the rendering time with more than 75 % In general
we have noticed that rendering time with the balanced photon map is only
slightly affected as the number of photons is increased. This is particularly
important in situations where high quality is required or in situations where
large parts of the scene are illuminated by caustics. It also makes the pho-
ton map easier to use since the primary parameter becomes the amount of
memory available.

Currently the user must specify both how many photons should be gen-
erated at the light sources and how many photons N to use in the radiance
computation (equation 4). It would be nice to have an adaptive method that
based upon the local density of the photons determined how many photons
to use in the estimate. In general we have found that it is quite easy to pre-
dict good values for the two parameters. If the parameters are badly chosen

8

the caustic will either become too blurred or too noisy.
The computed caustics are completely view-independent (even image in-

dependent). We do not need an initial ray tracing pass to determine the
”bucket-size” as the illumination map based approaches. This also means
that if very complex caustics are being visualized the user needs to adjust
the number of photons used according to the desired resolution of the display.
Another solution is just to always use enough photons if the memory permits
it. As we have shown balancing the photon map (kd-tree) almost eliminates
the dependence of the rendering time on the number of photons.

The rendering times could also be reduced even more by optimizing the
integration of the photon map with Schlick’s reflection model. Since we only
have a discrete set of directions we could benefit from lookup tables and save
a lot of vector computations.

The next step is integration of the method into a global illumination
algorithm and extending the use of the photon map to other kinds of indirect
illumination as in [9].

6 Conclusion

We have presented a new algorithm for rendering caustics on non-Lamber-
tian surfaces. The method is based on an extension of the photon map and
it renders caustics on procedurally defined surfaces. By balancing the pho-
ton map data structure we improve the rendering time and reduce memory
requirements. The resulting method is fast and general and our test-images
demonstrate that it is possible to achieve good results using only a limited
amount of photons. The method is therefore useful in existing global illumi-
nation techniques in which caustics can be computed separately.

7 Acknowledgment

Thanks to Niels Jørgen Christensen, the reviewers and to Per Christensen
and Martin Grabenstein for their helpful comments.

References

[1] Arvo, James: ”Backward Ray Tracing”. Developments in Ray Tracing. ACM Sig-
graph Course Notes 12, pp. 259-263, 1986

9

[2] Bentley, Jon Louis: ”Multidimensional Binary Search Trees Used for Associative
Searching”. Comm. of the ACM 18 (9), pp. 509-517, 1975

[3] Chen, Eric Shenchang; Holly E. Rushmeier, Gavin Miller and Douglass Turner: ”A
Progressive Multi-Pass Method for Global Illumination”. Computer Graphics 25
(4), pp. 164-174, 1991

[4] Collins, Steven: ”Adaptive Splatting for Specular to Diffuse Light Transport”. In
proceedings of 5. Eurographics Workshop on Rendering, pp. 119-135, Darmstadt
1994

[5] Cook, Robert L.: ”Distributed Ray Tracing”. Computer Graphics 18 (3), pp. 137-
145, 1984

[6] Glassner, Andrew S.: ”Principles of Digital Images Synthesis”. Morgan Kaufmann
Publishers Inc. 1995.

[7] Heckbert, Paul S.: ”Adaptive Radiosity Textures for Bidirectional Ray Tracing”.
Computer Graphics 24 (4), pp. 145-154, 1990

[8] Kajiya, James T.: ”The Rendering Equation”. Computer Graphics 20 (4), pp.
143-149, 1986

[9] Jensen, Henrik Wann and Niels Jørgen Christensen: ”Photon maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects”. Computers and Graphics 19 (2),
pp. 215-224, 1995

[10] Jensen, Henrik Wann: ”Importance Driven Path Tracing using the Photon Map”.
In ”Rendering Techniques ’95”. Eds. P.M. Hanrahan and W. Purgathofer, Springer-
Verlag, pp. 326-335, 1995

[11] Lafortune, Eric P.; Yves D. Willems: ”Bidirectional Path Tracing”. Proceedings of
CompuGraphics, pp. 95-104, 1993

[12] Mitchell, Don and Pat Hanrahan: ”Illumination from Curved Reflectors”.Computer
Graphics 26 (4), pp. 283-291, 1992

[13] Schlick, Christophe: ”A Customizable Reflectance Model for Everyday Rendering”.
In proceedings of 4. Eurographics Workshop on Rendering, pp. 73-84, Paris 1993

[14] Shinya, Mikio; Tokiichiro Takahashi and Seiichiro Naito: ”Principles and Applica-
tions of Pencil Tracing”. Computer Graphics 21 (4), pp. 45-54, 1987

[15] Shinya, Mikio; Takafumi Saito and Tokiichiro Takahashi: ”Rendering Techniques
for Transparent Objects”. Proceedings of Graphics Interface ’89, pp. 173-182, 1989

[16] Shirley, Peter: ”A Ray Tracing Method for Illumination Calculation in Diffuse-
Specular Scenes”. Proceedings of Graphics Interface ’90, pp. 205-212, 1990

[17] Shirley, Peter; Bretton Wade; Phillip Hubbard; David Zareski; Bruce Walter and
Donald P. Greenberg: ”Global Illumination via Density Estimation”. In ”Rendering
Techniques ’95”. Eds. P.M. Hanrahan and W. Purgathofer, Springer-Verlag, pp.
219-230, 1995

10

[18] Veach, Eric and Leonidas Guibas: ”Bidirectional Estimators for Light Transport”.
In Proceedings of 5. Eurographics Workshop on Rendering, pp. 147-162, Darmstadt
1994

[19] Ward, Greg: ”Real pixels”. In Graphics Gems II, James Arvo (ed.), Academic Press,
pp. 80-83, 1991

[20] Ward, Greg: ”The RADIANCE Lighting Simulation System”. In Global Illumina-
tion. ACM Siggraph Course Notes 18, 1992

[21] Watt, Mark: ”Light-Water Interaction using Backward Beam Tracing”. Computer
Graphics 24 (4), pp. 377-385, 1990

[22] Whitted, Turner: ”An Improved Illumination Model for Computer Graphics”.
Comm. of the ACM 23 (6), pp. 343-349, 1980.

11

Figure 1: Four images demonstrating the looks of the cardioid created as
light is reflected inside a cylinder-ring. From left to right the diffuse-specular
component α is 1.0, 0.5, 0.1 and 0.01.

Figure 2: A caustic from a glass sphere onto a glossy stone surface with a
diffuse-specular component α = 0.1. Notice how the caustic becomes curved
instead of oval as it would on a Lambertian surface.

12

Figure 3: A glass of cognac on a sand-surface. The sand is a fractal surface
with a synthetic sand-texture. The diffuse-specular component of the surface
is α = 0.6 and this value improves the realism of the sand compared to a
Lambertian approximation.

13

