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(a) Local illumination +
Classic dual scattering

16spp, 54s

(b) Local illumination +
Extended dual scattering

87spp, 7.2min

(c) Photon mapped
Left: equal quality, 174.1min
Right: equal time, 6.8min

(d) Our method
42spp, 7.0min

(e) Path traced reference
Left: 1200spp, 72.9min
Right: 85spp, 7.6min

Fig. 1. Rendering of the Pelt scene using different methods, with a sphere casting a shadow onto it. The various colors are defined using a texture so that each
fiber has a different color. (a) The classic dual scattering method fails to capture the scattered lobes from fur fibers, resulting in a dark appearance. (b) Our
extended dual scattering handles scattered lobes, but is brighter and still produces hard and solid appearance, and does not have color bleeding effects. (c)
Photon mapping is very inefficient for fur rendering, and is prone to overblur, as pointed out by the arrow. (d) Our method introduces a BSSRDF solution to
the complex scattering, closely matching (e) the path traced reference, but is an order of magnitude faster.

Physically-based hair and fur rendering is crucial for visual realism. One
of the key effects is global illumination, involving light bouncing between
different fibers. This is very time-consuming to simulate with methods like
path tracing. Efficient approximate global illumination techniques such as
dual scattering are in widespread use, but are limited to human hair only, and
cannot handle color bleeding, transparency and hair-object inter-reflection.

We present the first global illumination model, based on dipole diffusion
for subsurface scattering, to approximate light bouncing between individual
fur fibers. We model complex light and fur interactions as subsurface scatter-
ing, and use a simple neural network to convert from fur fibers’ properties
to scattering parameters. Our network is trained on only a single scene with
different parameters, but applies to general scenes and produces visually
accurate appearance, supporting color bleeding and further inter-reflections.
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1 INTRODUCTION
Hair and fur are pervasive in recent movies and games. Significant
recent progress has been made on physically-based local reflectance
models for hair [Marschner et al. 2003] and fur [Yan et al. 2015, 2017]
fibers. However, accurate rendering also requires global illumination
for the diffusive and saturated appearance of the hair or fur volume.
In fact, compared to local illumination that considers how light
interacts inside individual fibers, global illumination caused by light
scattering within the fur volume is usually brighter and more visible,
composing the main part of the appearance.

However, global illumination rendering is slow. Therefore approx-
imate methods are common, the most popular of which is the dual
scattering technique [Zinke et al. 2008]. Dual scattering produces
reasonably good results and allows real-time implementation.1 It
simplifies light scattering by assuming that all scattering events
happen only along main paths, i.e. straight lines along incident
directions. However, it is not applicable for fur rendering. This is
mainly because the complex scattered lobes within individual fur
fibers break the main path assumption. Even if we extend dual scat-
tering to handle these scattered lobes, the result still doesn’t match
the path traced reference (Fig. 1). This will be analyzed in detail in
Sec. 4. Furthermore, dual scattering does not support transparency
of hair fibers as seen from the camera. Compared to path traced
results, dual scattering still generates a hard and solid appearance
(Fig. 1).

We develop a novel BSSRDF (Bidirectional Surface Scattering Re-
flectance Distribution Function) solution to global illumination, built

1Currently, we focus on the offline rendering part of dual scattering as well as our
method, though real-time implementation is a natural next step for our model.
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upon the classic dual scattering, addressing many of dual scatter-
ing’s limitations. We analyze dual scattering in Sec. 4, and propose
our model with three components: direct illumination from individ-
ual fur fibers, dual scattering to handle specular light transport, and
BSSRDF for all other scattering events. In Sec. 5 and 6, we describe
our BSSRDF model, and explain how to convert properties from fur
fibers to BSSRDF parameters with the help of a multi-layer percep-
tron neural network (MLPNN). We validate our model in Sec. 7, and
show close matches of our predicted renderings, compared with
the path traced reference. Specifically, our model has these major
advantages:

BSSRDF-based approximate global illumination. Our method is the
first approximate global illumination model that is suitable for both
hair and fur rendering.2 We also provide the first empirical scheme
of conversion from hair/fur parameters to BSSRDF parameters using
a neural network. Our neural network is simple, consisting of only
two hidden layers, and is fast to evaluate and easy to integrate into
renderers for practical use. Furthermore, it only uses one scene for
training with different parameters, and it generalizes well on others.

Color bleeding and accurate appearance. Dual scattering and other
non-physically-based methods assume light transport only along
main paths and assume local similarity with the fur fiber being
shaded, resulting in opaque solid colors and BRDF style global illu-
mination approximation. Our BSSRDF model is able to handle color
bleeding from the fur volume for the first time, e.g. the color-filled
shadow in Fig. 1 (c), and its general softer appearance. Moreover, in
Sec. 7, we show that our model also generates much more accurate
appearance, especially in terms of highlight and overall shading
distributions, compared to the reference.
Further inter-reflections. Dual scattering works only with direct

illumination and non-hair inter-reflections. The part of the indirect
illumination from lit hair is missing with dual scattering. In contrast,
our BSSRDF global illumination model (Sec. 4) naturally fits into
offline renderers with further global illumination (Sec. 6), including
approximate fur-to-fur inter-reflections for the first time.
Efficient performance. In addition to its accuracy, our method is

also efficient. Thanks to the BSSRDF’s ability to “sum up” complex
scattering events and higher order bounces, we’re usually able to
achieve an order or magnitude speed up, compared with the path
traced reference by Yan et al. [2017]. Detailed timing information is
listed in Fig. 1 and Sec. 7.

2 RELATED WORK
In this section, we briefly describe related hair and fur local illumi-
nation models, and summarize existing global illumination methods
for hair, both ad-hoc and physically-based. Note that, in some pre-
vious work, local illumination and global illumination for hair are
called single scattering and multiple scattering. We avoid using these

2In Yan et al. [2017], the concepts of hair and fur are unified. Complex scattering
structures have been discovered in human hair fibers as well, and the benefit of these
structures has also been demonstrated in hair rendering.

terms throughout the paper, since multiple scattering events can
happen even within single fur fibers.

Hair and fur reflectance models: Marschner et al. [2003] proposed
the initial physically-based hair reflectance model. They approxi-
mate hair fibers as rough dielectric cylinders and use BCSDFs (Bidi-
rectional Curve Scattering Distribution Functions) to describe light
interactions within individual fibers. Based on whether light re-
flects (R) or transmits (T ) when interacting with a cylinder, three
types of lobes are formed: R, TT and TRT . Each lobe is separately
evaluated longitudinally and azimuthally, as illustrated in Fig. 2.
d’Eon et al. [2011] extended the Marschner model by fixing energy-
conserving issues, such as adding a TRRT lobe. Chiang et al. [2016]
used one lobe to account for all high order internal reflections. Yan
et al. [2015] proposed a physically accurate fur model, known as
the double cylinder model, in which the cuticle, the cortex and the
medulla are represented. The medulla scatters light, thus enriching
the set of lobe types. Yan et al. [2017] further simplifies these types,
so that only two scattered lobes TT s and TRT s are added to the
previous R, TT and TRT lobes, to model the complex scattering
behavior from the medulla, as labeled in Fig. 2 (c).
Hair global illumination methods: Accurate global illumination

requires simulating actual light bouncing between hair fibers. Moon
et al. [2006] extended photon mapping to store and query photons
within the hair volume as light bounces inside. Hery et al. [2012] and
d’Eon et al. [2013] proposed different importance sampling schemes
for hair BCSDFs to accelerate the convergence of path traced global
illumination.

Most non physically-based approximate global illumination meth-
ods treat hair fibers as semi-transparent. To compensate for light
transmittance through fibers to the shading point, shadow map
based methods [Lokovic and Veach 2000; Sintorn and Assarsson
2009; Yuksel and Keyser 2008] accumulated transparency of hair
fibers to approximate the optical thickness of hair fibers that the
light goes through. To enable transparency looking from the camera,
alpha blending based methods [Enderton et al. 2011; Sintorn and
Assarsson 2008, 2009; Yu et al. 2012] proposed different ways to
approximate the back-to-front blended self-occlusion effects. While
generating plausible results, none of these methods are physically-
based, and they have not been shown to be applicable for accurate
fur reflectance models.
The only physically-based approximation to hair global illumi-

nation is the dual scattering approximation method [Zinke et al.
2008]. It assumes that scattering events happen along the main path
— the light reaches the shading point by penetrating through the
hair volume in a straight line (global scattering), and scatters along
the camera path into the hair volume, then back to the shading
point (local scattering). Though successfully used in practice, dual
scattering cannot be applied for fur rendering (Sec. 4). Furthermore,
it doesn’t account for transparency or color bleeding.
Subsurface scattering: The idea of subsurface scattering was in-

troduced to computer graphics by Blinn et al. [1982]. Different ap-
proaches were applied to solve it, such as path tracing [Jensen et al.
1999], photon mapping [Dorsey et al. 1999] and scattering equations
[Pharr and Hanrahan 2000], but were too costly to make it practical.
Jensen et al. [2001] introduced a dipole solution to solve subsurface
scattering within translucent materials efficiently, which was later
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Fig. 2. (a) Longitudinal-azimuthal parameterization for hair/fur fibers. Any
direction ω can be parameterized into θ in the plane spanned by ω and
the cylinder axis u, and ϕ orthogonal to the plane. (b) Longitudinal and
azimuthal lobes of the Marschner hair model. (c) Lobes of the fur model by
Yan et al. [2017].

extended to extended dipole [Donner and Jensen 2008], quantized
diffusion [D’Eon and Irving 2011], anisotropic dipole [Jakob et al.
2010] and directional dipole [Frisvad et al. 2014] for better accuracy.
These advanced methods could in theory improve accuracy, but in
practice, we find that using the original dipole solution by Jensen et
al. [2001] already gives good results.
Participating media parameter conversion: To represent complex

appearance, previous work explored ways to convert from micro
structures to scattering parameters. Granularmaterials rendering [Meng
et al. 2015; Müller et al. 2016] uses BSSRDF models for fast ap-
proximation. However, the derivation assumes isotropic distributed
grains, but hair and fur are usually highly disciplined and anisotropic;
thus it is not directly applicable. In cloth rendering, it is a common
approach to abstract complex fibers into general participating me-
dia [Khungurn et al. 2015; Zhao et al. 2011, 2016]. They depend
on simple reflection models of cloth fibers, and render them as
high resolution volume grids. To convert from fibers’ properties
to parameters of participating media, the most popular model is
the microflake model [Heitz et al. 2015; Jakob et al. 2010], where
the volume is assumed to be filled with randomly oriented flakes
according to some distribution. However, we will show that the
microflake model does not produce good results in our case in Sec. 4,
and so we use neural networks.

3 BACKGROUND
In this section, we briefly recap some background knowledge. We
first describe hair and fur BCSDF models for local illumination from
individual hair/fur fibers. Then we talk about the dual scattering
approximation for hair global illumination. Finally, we introduce
the general subsurface scattering model and its dipole solution. We
propose our model in Sec. 4.

3.1 Hair and fur BCSDF models
Hair and fur reflectance models use dielectric cylinders to represent
hair and fur fibers. Light can get reflected (R) or trasmitted (T )
each time it interacts with the surface of a cylinder, representing
the hair or fur cuticle. Inside the cylinder known as cortex, it gets

Table 1. Parameters used for hair model (first 4 parameters) and fur model
in Yan et al. [2017] (all 9 parameters).

Parameter Definition
η refractive index of cortex
α scale tilt for cuticle
βm longitudinal roughness of cuticle (stdev.)
σc,a absorption coefficient in cortex
βn azimuthal roughness of cuticle (stdev.)
κ medullary index (rel. radius length)

σm,a absorption coefficient in medulla
σm,s scattering coefficient in medulla
д anisotropy factor of scattering in medulla
l layers of cuticle

partially absorbed thus producing color. The differences are that,
hair models use one cylinder (Fig. 2 (b)), producing unscattered lobes
p ∈ R,TT ,TRT . In contrast, the fur model [Yan et al. 2017] (Fig. 2 (c))
has an additional inner cylinder ormedulla that scatters light, adding
scattered lobes TT s and TRT s to p. However, more parameters are
required to describe the model. We list the parameters used in both
Marschner et al. [2003] and Yan et al. [2017] in Table 1.
The interactions with light between hair and fur fibers are de-

scribed using BCSDFs, often represented by the longitudinal-azimuthal
(θ ,ϕ) parameterization as illustrated in Fig. 2,

Lr (θr ,ϕr ) =

∫ π

−π

∫ π
2

− π2

Li (θi ,ϕi )Sc (θi ,θr ,ϕi ,ϕr ) cos2 θi dθidϕi ,

(1)
where Sc is the BCSDF, (θi ,ϕi ) and (θr ,ϕr ) are the incident and
outgoing directions, Li and Lr are the incoming and outgoing radi-
ance.
Similar to different lobes in BRDFs for surface reflectance, dif-

ferent hair and fur models represent their BCSDFs using a series
of lobes representing different types of light interactions. These
lobes are often factored into a product ofM and N lobes, describing
the light’s interactions on the longitudinal and azimuthal sections
separately. These factored lobe-based BCSDFs share the same repre-
sentation as

Sc (θi ,θr ,ϕi ,ϕr ) =
∑
p

Sp (θi ,θr ,ϕi ,ϕr )/ cos2 θd

=
∑
p

Mp (θh ) · Np (ϕ;η′)/ cos2 θd , (2)

where θh = (θr + θi )/2 and θd = (θr − θi )/2 are the longitudinal
half angle and difference angle, and ϕ = ϕr − ϕi is the relative
outgoing azimuth in [−π ,π ]. The azimuthal section is always treated
as circular, while the effect of an inclined longitudinal incident angle
is incorporated with a virtual IOR η′.
Specifically, Yan et al. [2017] proposes a simple fur reflectance

model, where the TT and TRT paths generate additional scattered
lobesTT s andTRT s when they pass the medulla, or the inner cylin-
der. So, there are 5 lobes in their model (Fig. 2 (c)). The scattered
lobes are also longitudinal-azimuthal separated, and both ofM and
N are calculated by querying precomputed scattering profiles.
Our method builds upon the fur model of Yan et al. [2017] with

unscattered lobes and scattered lobes. Yan et al. [2017] indicate
that a small medulla can also improve the appearance of human
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Fig. 3. (a) Illustration of dual scattering for approximate global illumination.
(b) Attenuation and spread computation for global scattering. (c) Attenuation
and spread computation for local scattering.

hair rendering, and unify hair and fur reflectance. Therefore, our
global illumination method also benefits hair rendering, and can be
considered a general approach for hair and fur.

3.2 Dual scattering approximation
Dual scattering approximates global illumination effects within the
hair volume at a shading point x as a combination of two compo-
nents: global scattering and local scattering, illustrated in Fig. 3 (a).
The global scattering approximates how much light arrives at x
after penetrating through n fibers along the light path. If the light
comes from behind x, it is directly seen by the camera, forming a
global scattered lobe. If not, the arrived light will be added to direct
illumination, going into the hair volume, scattering inside, then
going back, forming a local scattered lobe.

Dual scattering begins with simplifying the complicated longitu-
dinal lobes for each hair fiber as one forward lobe and one backward
lobe, as illustrated in Fig. 4 (a). It first pre-computes the averaged
forward/backward scattering intensity āf |b as

āf |b (θi ) =
1
π

"
Ωf |b

∫ π
2

− π2

S (θi ,ϕi ,ωr ) cos(θr ) dϕidωr , (3)

where ωr = (θr ,ϕr ) is the outgoing direction to the forward or
backward hemisphere Ωf |b .
Apart from the averaged forward/backward intensities, the for-

ward/backward lobes also require their averaged longitudinal vari-
ances β̄2

f |b . Since the TT lobe is mostly forward and the TRT lobe
is mostly backward, the variances directly take their squared rough-
ness β̄2

f = β2
TT and β̄2

b = β2
TRT . The R lobe is simply ignored.

To evaluate global and local scattered lobes, the key is to compute
how the light attenuates and spreads longitudinally along a main
path. Figures 3 (b) and (c) illustrate the computation. Dual scattering
assumes that the azimuthal scattering is complicated, and it always
becomes isotropic.

For the global scattered lobe, dual scattering calculates the atten-
uation of the light Tf reaching x after forward scattering through n
fibers by taking the sequential product of their averaged forward
attenuations. And the spread variance σ̄ 2

f reaching x is computed
by accumulating the pre-computed variances of all n fibers. Figure 3
(b) illustrates this idea.

The local scattered lobe is approximated similarly, as shown in
Fig. 3 (c). The camera path goes into the hair volume, going for-
ward through i hair fibers, scattering back once, then going forward
through the previous i fibers until reaching the shading point x

Fig. 4. (a) Averaged forward/backward scattering internsities āf |b and vari-
ances β̄ 2

f |b for a single hair fiber. (b) All 5 longitudinal lobes in Yan et
al. [2017]. Note the scattered lobes TT s and TRT s that are too smooth
and wide to follow the main path assumption. (c) Simple extension of
dual scattering by calculating the contribution of scattered lobes to the
forward/backward scattered lobes anyway.

again. By summing up all possible paths with varying i ≥ 1, the
local attenuation with one backward scattering eventA1 can be com-
puted. In order that the camera path finally returns to x, backward
scattering can also happen any odd number of times i.e. 3, 5, . . . .
Dual scattering also computes A3, and ignores higher-ordered scat-
tering, so that the total attenuation for the backward scattered lobe
isAb = A1+A3. The spread variance σ̄ 2

b is the averaged accumulated
variance along each possible path, weighted by its attenuation.

With global and local scattered lobes computed, the final approx-
imate global illumination is the sum of both lobes, added to the hair
BCSDF model. Specifically, the local scattering forms a lobe:

Sb (θi ,θr ,ϕ) =
Ib (ϕ)

π cos2 θi
· dbAb ·G (θr + θi ; σ̄b 2), (4)

where db is the backward scattering density constant, usually set
between 0.6 and 0.8, while G (µ;σ 2) is a Gaussian with mean µ and
variance σ 2. Ib (ϕ) is a binary backward hemisphere indicator which
is 1 when ϕ ∈ [−π/2,π/2] and 0 elsewhere.

The global scattering forms another lobe:

Sf (θi ,θr ,ϕ) =
If (ϕ)

cos2 θi
·df Af ·

∑
p

(
G (θr + θi ; β̄2

p + σ̄f
2)N

f
p

)
, (5)

where df is the forward scattering density constant, usually set
between 0.6 and 0.8. If (ϕ) is a binary forward hemisphere indi-

cator which is 0 when ϕ ∈ [−π/2,π/2] and 1 elsewhere. N f
p =

1
π

∫ π
2
π
2

Np (ϕ − ϕ
′;η′) dϕ ′ is the averaged azimuthal lobe p within

the front hemisphere.
The dual scattering has made many assumptions, the most impor-

tant of which is the main path assumption. In Sec. 4, we demonstrate
that this assumption is only reasonable for unscattered lobes. For
scattered lobes, it will fail. So, in our model, we only use dual scat-
tering as a component to handle paths consisting of unscattered
lobes (TT and TRT , as in hair rendering).

The failure of dual scattering is mainly because the scattered lobe
is too wide and uniform to be considered along the main path, as
illustrated in Fig. 4 (b). We will discuss a dual scattering extension
in Sec. 4.2 that results in wide forward/backward lobes (Fig. 4 (c)).
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Fig. 5. (a) Illustration of BSSRDF, where the light exits at different points
than the incident point. (b) Dipole method approximating BSSRDF by sum-
ing up contribution from a real source and a virtual source to an exiting
point at distance r .

3.3 Subsurface scattering
Instead of being directly reflected at the shading point, light may go
into the subsurface, scatter, and exit at a different point, as shown
in Fig. 5 (a). Note that, the idea of subsurface scattering only ap-
plies to regular surfaces, and has not previously been attempted
for hair and fur rendering. One of our key innovations is to use
subsurface scattering ideas for global illumination in hair and fur, as
will be described in detail in Sec. 4. In this subsection, we introduce
subsurface scattering on regular surfaces.
The subsurface light transport is often represented using BSS-

RDFs, leading to a generalized rendering equation

Lo (xo ,ωo ) =

∫
A

∫
Ω
Li (xi ,ωi )Sss (xi ,ωi ;xo ,ωo ) (n·ωi ) dωidA (xi ),

(6)
where Sss is the BSSRDF, extending a BRDF with different incident
and outgoing positions. A is the area associated with the incident
position xi .
To represent BSSRDFs, material properties that are responsible

for the scattering behavior must be defined: σa is the absorption
coefficient, σs is the scattering coefficient, σt = σa + σs is the
extinction coefficient, and α = σs/σt is the albedo. For anisotropic
scattering, an anisotropy factor д ∈ [−1, 1] is defined, resulting in
reduced scattering coefficient σ ′s = (1 − д)σs , reduced extinction
coefficient σ ′t = σa + σ

′
s and reduced albedo α ′ = σ ′s/σ

′
t .

While the BSSRDF is often difficult to calculate, Jensen et al. [2001]
proposed a dipole method to solve the multiple scattering part of it.
As illustrated in Fig. 5 (b), the dipole method assumes local flatness,
putting a real point source beneath the incident xi and a virtual
point source above it. Then the diffuse reflectance at the outgoing
position xo of distance r is the contribution of these dipole sources:

Rd (r ) =
α ′zr (1 + σtrdr )e−σtrdr

4πd3
r

−
α ′zv (1 + σtrdv )e−σtrdv

4πd3
v

, (7)

where zr = 1/σ ′t and zv = −zr (1 + 4A/3) are the positive and nega-
tive z-coordinates of the real and virtual point sources, respectively.
Here A = (1 + Fdr )/(1 − Fdr ), and Fdr is a refractive index related

variable. dr =
√
r2 + z2

r and dv =
√
r2 + z2

v are distances from xo

to the sources. σtr =
√

3σaσ ′t is the effective extinction coefficient.

The BSSRDF due to multiple scattering, a.k.a. the diffusion term
is then

Sd (xi ,ωi ;xo ,ωo ) =
1
π
Ft (η,ωi )Rd (∥xi − xo ∥)Ft (η,ωo ), (8)

where Ft terms are for Fresnel transmission.
Apart from the multiple scattered diffusion, to complete the BSS-

RDF, a single scattering term S (1) (xi ,ωi ;xo ,ωo ) is added to account
for cases where only one scattering event happens. Note that the
single-multiple scattering separation is approximate. And in our
model, we use a different separation scheme, as will be introduced
in Sec. 4.

To accelerate rendering using the dipolemodel, Jensen et al. [2002]
later proposed a two-pass algorithm. In the first pass, they uniformly
distribute sample points across the surface of the translucent object.
Each sample point’s irradiance is evaluated through a path tracing
process. The second pass is a traditional path tracing process, where
nearby sample points are queried for their contribution to each
shading point. To accelerate this process for locating points, a hier-
archical octree structure is built on top of these sample points, where
each node represents a single sample point, with its irradiance value
and position the average of its child nodes. The octree structure is
traversed top-down to perform quick rejection of samples that are
far enough from the shading point.

4 MOTIVATION AND OVERVIEW
In this section, we briefly analyze the limitations of dual scattering
to motivate our method. Then we provide a high level overview of
our full global illumination model, specifying different components
it consists of.

4.1 Limitations of dual scattering
In dual scattering, there is an important assumption that the lon-
gitudinal lobes from hair BCSDFs (thus the averaged forward and
backward lobes) are sharp. This is why it is reasonable that the light
only transports along main paths. While generally true for human
hair, when applied to animal fur, the model will break. The medul-
las within fur fibers produce smooth and diffusive scattered lobes,
which do not exist in previous hair models and are not suitable to be
abstracted using a forward and a backward lobe, as shown in Fig. 4.
Even if we do assume light scattering only along main paths,

the rendering results in Figs. 1 and 17 indicate that dual scattering
still cannot get us the correct light spread or color bleeding around
the shading point x. This is because dual scattering always adds
approximate global illumination only to x. Intuitively, the difference
is analogous to BRDFs vs. BSSRDFs. This observation motivates us
to model global illumination using BSSRDFs, as will be elaborated
in Sec. 4.3 and 5.
Another limitation of dual scattering is that it is unclear how

to handle multiple bounces. One possible approach is to trace sec-
ondary rays through the hair volume until they hit non-hair geom-
etry. All hair intersections along the secondary rays are considered
as a part of the global scattering component of dual scattering. How-
ever, this approach usually produces identical images, compared to
the classic dual scattering method without multiple bounces. This
is because the secondary ray’s contribution will quickly fall off due
to the hair fibers it penetrates, and the absorbed incident radiance
before reaching the non-hair geometry. Because of this, we typically

ACM Transactions on Graphics, Vol. 36, No. 6, Article 208. Publication date: November 2017.
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(a) Local + Classic DS
κ = 0

(b) Path traced
κ = 0

(c) Local + Classic DS
κ = 0.36

(d) Local + Ext. DS
κ = 0.36

(e) Our method
κ = 0.36

(f) Path traced
κ = 0.36

Fig. 6. Classic dual scattering (a) works well on traditional hair models without medulla compared with path traced reference (b), but cannot capture scattered
lobes from fur models with medulla (c). Our extended dual scattering (d) approximately handles the medulla and resolves the energy loss, but still doesn’t
match path traced reference (f) as well as our method (e).

use standard extended dual scattering for efficiency in the rest of the
paper for comparison, unless multiple bounces are clearly stated, as
in Figs. 16 (c) and 18 (a).

4.2 Extending dual scattering
Since dual scattering only works for specular unscattered lobes,
simply applying it to these lobes will result in energy loss from scat-
tered lobes (see Figs. 1 (a) and 6 (c)). To guarantee fair comparison
with our approach later, we extend dual scattering to approximately
handle the scattered lobes.

Our extension is to simply average the attenuation and spread of
all lobes, regardless of whether they are spread or not (Fig. 4 (c)). We
calculate the averaged forward/backward attenuation āf |b using
Eqn. 3, but using all lobes including TT s and TRT s . We average the
lobe-weighted average spread similar to Sadeghi et al. [2010] as:

β̄f |b =

∫
Ωf |b

∑
p∈{R,TT ,TRT ,TT s ,TRT s } Spβp dω∫

Ωf |b

∑
p∈{R,TT ,TRT ,TT s ,TRT s } Sp dω

, (9)

assuming the stardard variances of the TT s and TRT s lobes as
βTT s = βTRT s = π/4, since they are approximately uniformly
distributed in the longitudinal section. The spread is pre-computed
by uniformly sampling θ and ϕ and numerically calculating the
integrals.
Note that, our extension to dual scattering is a bold assumption.

It will result in unreasonably wide forward and backward lobes, but
at least allows for energy conservation (See Fig. 4). Moreover, it still
makes the main path assumption, thus resulting in no color bleeding
effects, as pointed out in Fig. 1 (b). Furthermore, the brightness of
the extended dual scattering is not stable (with fixed df = db = 0.7).
Sometimes it will generate much brighter appearance than the ref-
erence (Fig. 1) while sometimes being darker (Fig. 16).

We compare the classic and our extended dual scattering in Fig. 6
(a)-(d). We first use the classic dual scattering on human hair with-
out medulla (a) together with local illumination. Since no scattered
lobes exist, this is a case where the classic dual scattering works
well, compared to the reference (b). Then we apply the classic dual
scattering and our extended dual scattering with a medulla of width
κ = 0.36 (c)-(d), also with local illumination, and compare themwith
our method (e) and reference (f). We find that the classic dual scat-
tering suffers from severe energy loss. The extended dual scattering
alleviates this issue, but generates a flat appearance. In contrast, our

(a) Local illum.
component Sc

(b) Unscattered
component Sds

(c) Scattered
component Sss

(d) Our full model

Fig. 7. Decomposed components in our model. (a) Local illumination compo-
nent Sc , including all 5 lobes: R , TT , TRT , TT s and TRT s . (b) Unscattered
component Sds captured by classic dual scattering, including R , TT and
TRT lobes. (c) Scattered component Sss represented using BSSRDF, includ-
ing all light interactions that are related to TT s and TRT s lobes. (d) Our
full model with all components.

BSSRDF model, introduced next, generates a close match with the
reference, as will be introduced next.

4.3 Model overview
To break the main path constraint, we represent our global illumina-
tion model as a combination of a BCSDF and a BSSRDF. The BCSDF
also contains two components: direct illumination and dual scatter-
ing for multiple scattering from only specular lobes. The BSSRDF is
responsible for all other multiple scattering events.
The direct illumination component describes light interaction

with single hair or fur fibers. It is thus the hair or fur’s BCSDF Sc in
Eqn. 2. We name this part as the local illumination component.

Another part is the dual scattering of specular lobes Sds . This is
part of the global illumination. Since there are no scattered lobes,
the main path assumption still holds. Specifically, we convert only
R,TT andTRT lobes into forward and backward lobes using Eqn. 3,
and use them to compute dual scattering’s contribution. We define
this part as the unscattered component. This part is slightly more
accurate than the classic dual scattering method, since we also take
the R lobe into account.

For the rest of the energy, at least one scattered lobe contributes.
Since the scattered lobes are usually smooth and more isotropic than
unscattered specular lobes, significant scattering happens. Thus, we
use subsurface scattering to capture the scattering effects. Specifi-
cally, given the parameters of hair or fur, we convert them to sub-
surface parameters, then use the dipole method for rendering. We
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(a) Microflake (b) Ours (c) Path traced

Fig. 8. Rendering of scattered component using different methods. Our em-
pirical BSSRDF model fits the path traced reference much closer, compared
to the physically derived microflake model.

name this part as the scattered component. Note that, for hair which
doesn’t have a medulla, this component becomes zero. In this case,
our method reduces to classic dual scattering.
Our final model can be represented as:

SBCSDF = Sc (ωi ,ωr ) + Sds (ωi ,ωr ), (10)
SBSSRDF = Sss (xi ,ωi ,xo ,ωr ), (11)

where Sc is individual hair or fur fiber’s BCSDF. Sds is the dual scat-
tering approximated unscattered component, which is essentially
another BCSDF. Sss is our estimated BSSRDF scattered component.3
For an intuitive illustration of different components, we visualize
the decomposed appearance of each component in Fig. 7.
Though the idea of using a BSSRDF model to represent the scat-

tered component may sound straightforward, it is far from easy,
both in theory and in practice. First, BSSRDFs work only with actual
surfaces. However, when it comes to hair or fur fibers, there is no
concept of a surface. For this reason, distributing dipole samples for
hair and fur and calculating associated areas with them is difficult.
Second, there is no existing theory to convert physically based hair
and fur properties into parameters of BSSRDFs. Third, the dipole
solution to BSSRDFs only transports light locally in the shading
point’s neighbourhood. So, indirect lighting from the same hair or
fur volume cannot be accounted for, resulting in dark areas with
energy loss. In Sec. 5 and 6, we elaborate how to deal with all these
difficulties.

4.4 Physically-based derivation of BSSRDF parameters
Theoretically, there is no existing BSSRDF model that is suitable to
represent hair and fur volumes, since the hair and fur fibers define
rather anisotropic scattering behavior. As introduced in Sec. 2, the
closest match is the microflake model. Deriving a physically based
model based on the microflake theory for fur fibers is not impossible.
However, we find it does not work well in practice, and we turn to
a data-driven approach to solve the problem, as will be introduced
in the next section. Here we assume that the microflake model is
the natural first step to try, so we describe it below and compare it
with our BSSRDF model in Fig. 8.

We think of each hair/fur fiber as a series of small "flakes" with
their BCSDFs as phase functions [Jakob et al. 2010]. However, this
simple conversion is not well-defined in practice, mainly because
of the high complexity of hair/fur fibers. The BCSDF of a hair/fur
3The BCSDF and BSSRDF components are defined in different domains, and they are
integrated using Eqns. 1 and 6, respectively.

fiber consists of 5 lobes, R, TT , TRT , TT s and TRT s , which all have
rather complicated shape and large variation with the incoming
light direction. However, in microflake theory, each microflake is
completely opaque and mirror reflective. Nevertheless, it is still
possible for us to derive microflake parameters by assuming local
similarity, as discussed in the supplementary material.
We apply the derived parameters to render an actual scene, as

shown in Fig. 8. As expected, the result is still far from the path
traced reference. The different shading distribution demonstrates
the inability of individual flakes to represent hair/fur fiber segments,
as analyzed above. Moreover, we also find a color difference as
compared to the reference. This is because the color mainly comes
from the absorption coefficient σa , which is usually two orders of
magnitude smaller than the scattering coefficient σs . So, a slight
inaccuracy in σa will result in significant color difference.

5 BSSRDF APPROXIMATION FOR SCATTERED
COMPONENTS

As discussed in Sec. 4.4, since deriving a practical physically based
model to estimate the dipole parameters from the hair/fur parame-
ters is challenging, we turn to a data driven approach. We propose
a neural network structure to solve the parameter conversion prob-
lem. We chose a neural network over other methods because the
dimensionality of the input and output spaces of the problem is
high and the conversion function is likely to be non-linear, making
simple fitting methods impractical.
In this section, we first generalize the dipole model for hair/fur

geometry in Section 5.1 to be able to use the model in the first place.
Then, in Section 5.2, we describe our neural network architecture
for the parameter conversion problem. In Section 5.3, we describe
how to train the neural network efficiently.

5.1 Generalizing BSSRDF for Fur/Hair Geometry
We extend the 2-pass algorithm introduced in Section 3.3 to enable
hair/fur models in dipole rendering. The only missing component
here is how to perform point sampling on a hair/fur geometry.

Figure 9(a) shows a hair/fur geometry representation, where each
hair/fur fiber is represented by an array of vertices v0, ...,v3 with
associated radiuses r0, ..., r3. The geometry represented by each 2
consecutive vertices is a frustum. To generate a sample point, we
first randomly select a frustum from all frustums in the hair/fur
geometry with a probability proportional to its side surface area.
Then, a sample point can be obtained by a uniform sampling on the
selected frustum’s side surface as in Fig. 9(b). Since the sample points
generated this way may be highly occluded from the environment
as illustrated in Fig. 9(c), we remove those points that have zero
estimated irradiance in the first pass in the octree construction
process for efficiency.

5.2 Neural Network for Parameter Conversion
In this section, we now describe our neural network architecture to
estimate the parameters of a dipole model given the parameters of
a fur/hair model. The appearance of a fur/hair model is decided by
the 9 material parameters listed in Table 1. From our experiments,
we find that only 5 parameters, κ, σc,a , σm,s , η and l out of all
9 parameters have observable impact on the appearance of the
scattered component. Intuitively, this is because д and α are often
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Frustum

(a) Hair/fur geometry

Select Frustum

Generate Sample

(b) Point sampling

Hair/Fur Fiber

Light

Occluded Sample Point

(c) Occlusion

Fig. 9. Sample placement for hair/fur geometry.

very close to zero in realistic fur/hair models, so they only have very
subtle impact on the scattered component. The roughness parameter
of unscattered lobes β is small compared with the roughness of
scattered lobes, so its effect is minimal in the scattered component
where each path has at least one scattered interaction. We don’t use
σm,a as input because it is correlated with κ and σc,a .

On the other hand, the parameters of a dipole model include σa
and σs as we introduced in Section 3.3. To enhance the flexibility of
the dipole model, we add another brightness scaling parameterw ,
which is multiplied with the rendered dipole component at the end.
Note that for the dipole model, the anisotropy parameter д and σs
are correlated. Therefore, we only change σs as in the dipole model
and always set д to zero. We do not have any special restriction on
the value ofw in order to have more flexibility in the model.
Given the high dimensionality of the parameter spaces, we use

a multi-layer perceptron neural network (MLPNN) as our model
for the parameter conversion problem. Figure 10 shows our model
structure. For the input parameters, we first apply a preprocessing
step to map them into an appropriate range that is easy for neural
networks to train. The preprocessing function for each input is listed
in the figure. Then, we feed the 5 preprocessed input parameters,
X = {x0, ...,x4} into a MLPNN with 2 10-node fully connected
hidden layers using tanh activation function to produce 3 output
parameters, Y = {y0,y1,y2}. Finally, we apply a post-process to
convert the output to dipole model parameters σa , σs and w as
follows:

σa = 23 tanh(y0 )+5, σs = 23 tanh(y1 )+5, w = 5 tanh(y2) + 5. (12)

Note that the mapping we choose in post-processing is to fit our
training scene settings, which we will elaborate in Section 5.3.

We chose a very simple neural network structure instead of deep
neural networks mainly for two reasons. First, the parameter conver-
sion function should be very smooth given that the appearances of
both models vary smoothly with changing input parameters. There-
fore, using a simple structure is sufficient and avoids over fitting.
Second, the neural network needs to be evaluated at each shading
point during rendering to support heterogeneous fur models. Using
a simple structure makes sure that the evaluation is relatively cheap
compared to ray tracing. We validate in Section 6 that the neural
network evaluation time is less than 10% of the total render time.
Our neural network also has negligible memory footprint, since it
only has about 200 parameters.

MLPNN

Preprocess
Postprocess

Render Interpolate

Loss

Fig. 10. Our neural network structure for the parameter conversion prob-
lem.

5.3 Training the Neural Network
To train the neural network, we need to quantitatively measure
the quality of each input-output pair it generates. To do this, as
illustrated in Fig. 10, we compare the rendered image using the
hair/fur model with input parameters and the rendered image using
the dipole model with output parameters under the same scene
settings. The resemblance between the 2 images should be a good
indicator of how good the parameter conversion predicted by the
neural network is.

Scene Settings. We use a single scene to train our neural network.
Figure 10 shows an example of renderings produced by an input-
output pair using the training scene. The model in our training scene
is a piece of fur pelt directly facing the camera. We use the same
camera and light settings and only change the material properties
of the model throughout the training process. We show in Section 7
that although our model is only trained on one scene, it generalizes
to many other scenes with different geometry, lighting, etc. This is
because the parameter conversion function is not sensitive to the
scene settings, and is an intrinsic property of the materials from
the 2 models (hair/fur and dipole) that we try to match. Here, we
only use the training scene to find a good approximation to the
parameter conversion function.

The output dipole parameters of the neural network fit the train-
ing scene well. However, if we scale the training scene by a factor,
σa and σs need to be scaled accordingly to obtain correct results. In
Section 6, we describe how to do this in scenes with different scales.
Loss Function. Suppose X is an input parameter set and Rf (X )

is its rendered image using the hair/fur model with only the scat-
tered component. Recall that the unscattered component is han-
dled separately using the traditional dual scattering in our model
as introduced in Section 4.3. Therefore, we use path traced scat-
tered components as the reference image for the dipole model to
fit. Y = f (X ) is the output parameter set predicted by the network,
where f is the parameter conversion function approximated by the
neural network. Rs (Y ) is the rendered image using the dipole model
and the output parameter set. Our loss function is defined as:

Loss = γL1 (Rf (X ),Rs (Y )) + Ls (Rf (X ),Rs (Y )), (13)
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Bilinear 
Interpolate

Scale

Fig. 11. We approximate Rs using bilinear interpolation. Before training the
neural network, we store a 2D grid of pre-rendered images with varying σa
and σs in log space. Given the 3 dipole parameters, σa , σs and w , we first
use σa and σs to perform bilinear interpolation to obtain the appearance of
the rendered image. Then, we scale the interpolated image by w to obtain
the final approximated rendering.

where L1 is the L1 norm between 2 images. Ls (Rf (Y ),Rs (X )) =
1 − SSIM(Rf (Y ),Rs (X )) is the structural loss term, where SSIM is
the structural similarity index [Wang et al. 2004] between 2 images.
γ is a parameter to weight the relative impact. In our training, we
set γ = 0.1 to stress more on the structural loss term. This is because
the structural loss term has much more impact on the overall visual
quality than the L1 term.
Approximate rendering using bilinear interpolation. For efficient

training, Rs needs to have a fast evaluation method and be differen-
tiable in order to do gradient back-propagation. Finding the gradi-
ents can be difficult [Gkioulekas et al. 2013; Pfeiffer and Marroquim
2012], especially for a dipole rendering system.
To solve this, we approximate Rs using a bilinear interpolation

method as in Fig. 11. Specifically, we pre-render and store images
with different σa and σs on a regular 2D grid in log space, covering
the potential range of the 2 parameters. Then, for a given output
parameter set σa , σs and w , we first use σa and σs to perform a
bilinear interpolation on the 2D grid to approximate the rendered
image and then usew to scale the overall brightness of the image.
This way, Rs becomes differentiable and can be evaluated efficiently
through a bilinear interpolation. For the training scene, where the
model is bounded in a unit radius sphere, we find that a σa and
a σs both in the range [22, 28] are sufficient. Therefore, we define
our post-processing mapping in Equation 12 such that the two
parameters both fall in the range. Similarly forw , a range in [0, 10]
is sufficient.
At this point, we have all the ingredients to train the neural

network. We generated a dataset with random input parameters
and corresponding rendered images. In each training iteration, we
randomly select a subset of the training examples from the dataset
and minimize the loss function using gradient descent. We will
provide more details about our training settings in Section 6.

6 IMPLEMENTATION
In this section, we provide key implementation details of two rele-
vant aspects: training and rendering.

Table 2. Sampling strategies used for our data set generation, where u is
a uniform random number in range [0, 1]. Please refer to Table 1 for the
meaning of each parameter. Note that we choose these strategies to cover
the range of realistic hair/fur parameters for the hair/fur model in Yan et
al. [2017], which we list in the parenthesis next to each parameter.

κ (0.3, 0.9) σc,a (0.01, 4) σm,s (0.25, 4) η (1.2, 1.7) l (0.3, 2.5)
0.6u + 0.3 29u−7 24u−2 0.5u + 1.2 2.2u + 0.3

6.1 Neural Network Settings
We generate both the training samples and the 2D grid of output
rendered images in Fig. 11 using the Fur pelt scene. For training
samples, we rendered 1000 images in 128x128 resolution with 1024
samples per pixel using different input parameter sets randomly
sampled from the 5D input space. Note that for each image, we use
different σc,a in the RGB channels to increase diversity. Figure 12
shows some of the examples. We list our sampling strategies for
each input dimension in Table 2. For fixed parameters, we set βm
and βn to 0.1 and the rest to 0. As introduced in Section 5, these fixed
parameters do not have observable impact on scattered components.
For the 2D grid of rendered images, we generate a 15x15 uniform
grid in the log space of σa and σs .
We trained our neural network using Tensorflow with Adam

gradient descent optimizer. Training takes about 20 minutes to
converge on our data set. We obtained 0.90 structural similarity
and 0.070 L1 norm on average in our training set. We also tested
the neural network in a validation set, where we generated 100
images using the same sampling strategy. In the validation set, we
obtained 0.89 structural similarity index and 0.072 L1 norm. Note
that a structural similarity index around 0.9 suggests fairly high
resemblance between two images. We show more validation of our
neural network in Section 7.

6.2 Rendering

Parameter Scaling. The dipole model parameters we obtained in
Section 5 is for the scale of our training scene. To generalize to scenes
with different scales, we use the estimated mean free path to scale
σa and σs , since these 2 parameters are inversely proportional to
the mean free path. Specifically, for a given input scene, we estimate
the average surface density d of the hair/fur fibers. The mean free
path of the hair/fur volume is inversely proportional to

√
d . This

is because if we scale the scene up by a factor of 2, the average
distance between 2 closest hair/fur fibers also scales up by 2 and
the surface density of the hair/fur fiber becomes 1/4 of the original.
Suppose the training scene’s estimated hair/fur fiber density is d0,
we scale both σa and σs by

√
d0/d for rendering the scene. As we

show in Section 7, this simple scaling scheme generalizes very well
with different scene scales.

Heterogeneous hair/fur parameters. To support heterogeneous
hair/fur parameters, we simply perform the parameter conversion
using the neural network introduced in Section 5.2 at each shading
point and evaluate the dipole model using local parameters. Note
that the size of our neural network structure is very small, so that
the overhead of the evaluation is minimal compared to the ray trac-
ing cost. We validate this using the hair with medulla scene shown
in Fig. 6(e). The hair scene is homogeneous, so the neural network
only needs to be evaluated once at the beginning. For comparison,
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0.085 0.154 0.206 0.166 0.101 0.080 0.090 0.039

0.120 0.124 0.074 0.180 0.072 0.132 0.157 0.132

0.099 0.064 0.071 0.096 0.084 0.059 0.032 0.098

Fig. 12. Validation of our neural network training. Odd numbered rows are
rendered with path tracing of actual hair/fur fibers as reference. Even num-
bered rows are rendered using best fitted/predicted parameters as BSSRDF.
Top two rows: selected training set and fitting. Middle two rows: selected
test set with same geometry but different lighting conditions. Bottom two
rows: selected test set on another scene. Our trained neural network predicts
a perceptually similar match, compared to the reference. The numbers in
the figures show the loss value of each fitted image. Recall that the loss
function is defined in Section 5.3.

0.105 0.151 0.198 0.155 0.271 0.499 0.244 0.317

0.113 0.164 0.219 0.188 0.310 0.544 0.304 0.356

Fig. 13. Comparison of our neural network training using single scene (fur
pelt, leftmost two columns) and multiple scenes (all 4 scenes in this figure).
The first row is the path traced reference. The second row is predicted using
our network trained with a single scene. The third row is predicted using
our network trained with multiple scenes. Our neural network predicts a
perceptually similar match using single and multiple scenes. The last two
examples also show inaccurate cases of our neural network, especially with
back lighting in the rightmost two columns.

we render the scene with/without re-evaluating the neural network
at each shading point. The render time without re-evaluation is 99s
and the render time with re-evaluation is 105s. This suggests that
the overhead of the neural network evaluation is less than 10% of
the total render time.
Multi-bounce Illumination For multi-bounce illumination with

dual scattering, we designed an importance sampling scheme for
the dual scattering shading which we provide in our supplemental
materials. With the importance sampling scheme, we can follow
the traditional path tracing routine by recursively sampling rays
and computing shading with dual scattering models. However, one
issue is that strictly following the original path tracing routine
would overestimate energy. This is because the dual scatteringmodel
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(a) Curves showing how the fitted
dipole parameters vary with the ab-
sorption coefficient in the cortex.
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(b) Curves showing how the fitted
dipole parameters vary with the
medulla index.

Fig. 14. Parameter conversion curves learned by our MLPNN.

Table 3. Statistics for all our scenes, rendered in 720p resolution. For each
scene, there are # Strands hair/fur fibers, each with # Segs line segments.
Each scene is rendered using # Samples using our 3-component global
illumination model. Pre-distributing dipole samples usually takes less than
1/10 of the overall rendering time, so we do not list these timings here.

Fig. #Strands #Segs #Samples Time
Pelt 1 12.5K 4 42 7.0min

Raccoon 15 260K 22 64 5.4min
Wolf 16 1.9M 5 17 5.8min

Hamster 18 580K 15 31 5.0min
curly 17 53K 64 42 5.0min

already handles local multiple scattering in a neighborhood. This
way, if the next bounce is a nearby hair fiber, the energy would be
over estimated. To solve this we set a threshold dm for the distance
between 2 consecutive bounces with dual scattering material. If the
distance is smaller than dm , we stop the recursive path tracing since
the next bounce has already been considered by the dual scattering
shading at the current bounce, otherwise we continue tracing the
ray as usual. We apply the same strategy for the recursive irradiance
sampling in the dipole model for the same reason. For all our test
scenes, we setdm = 100r , where r is the average hair/fur fiber radius
of the hair/fur model at the current bounce point.

7 RESULTS
In this section, we first validate our trained neural network, then
show rendering results with full global illumination generated us-
ing our BSSRDF model, and compare them with previous work. We
implement our model in the Mitsuba renderer [Jakob 2010], and gen-
erate all results using an Intel 6-core i7 4960X CPU, hyperthreaded
to 12 threads. The source code for both neural network training and
BSSRDF model implementation, as well as our trained neural net-
work are available on http://viscomp.ucsd.edu/projects/furbssrdf.

Validation of the training. As a typical shape of fur growth, the Fur
pelt scene is used to train the neural network. We first validate the
trained neural network with the same scene geometry but different
lighting conditions and different fur fiber parameters. Then we
validate using a new hair geometry, also with different lighting
and fiber parameters, to demonstrate that it is sufficient to train on
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Local+Unscat.
64spp, 2.5min

Scattered
64spp, 4.1min

Full model
64spp, 5.1min

Path (ES)
64spp, 2.5min

Path (REF)
1Kspp, 40min

Fig. 15. (Top row) A rendering of the Raccoon model using our efficient
3-component global illumination model. (Bottom row) Insets showing de-
composed renderings of different components, compared to path traced
reference with 64 samples and 1024 samples per pixel, respectively. We find
that the main source of noise is the unscattered component using dual
scattering. The scattered component converges much faster. Overall, our
full model produces much less noise than path tracing for equal samples.

only one scene and use the result to predict other scenes. Figure 12
shows some of the validation results. We also include all validations
in the supplemental material. Figure 13 demonstrates that using
one scene to train our neural network is enough. Using multiple
scenes only results in slightly better loss, and it doesn’t help with
difficult cases either. Slight color differences with the reference still
exist. And back lighting is still inaccurate to represent using the
simple dipole model. In the future, more accurate models such as
extended dipole [Donner and Jensen 2008] and multi-pole [Donner
and Jensen 2005] may help with these cases.

Figure 14 shows curves learned by theMLPNN structure. In Fig. 14
(a), we show how the dipole parameters vary with the absorption
coefficient in the cortex, while keeping other input parameters fixed.
As σc,a increases, each hair fiber absorbs more energy. This would
result in a darker and sharper looking appearance of the hair model.
In this case, we can see that the dipole model decreasesw to match
the darker appearance and increases σs to match the sharper look.
In Fig. 14 (b), we show how the dipole parameters vary with the
medulla index, while keeping other input parameters fixed. Increas-
ing the medulla size would produce more scattering events between
hair fibers, which leads to a brighter and more smooth looking
appearance. The learned dipole model responds by increasing w
and decreasing σs in this case, which produces similar effects. Note
that σa stays relatively flat in the learned function. This is probably
because some correlations exist among the 3 output parameters.
For example, increasing σa and decreasingw would both decrease
the brightness of the rendered model. For this reason, the MLPNN
probably finds it easier to fix one of them in the learning process.
However, we should note that the learned relatively constant values

(a) Ours (1 bounce)
62spp, 5.0min

(b) Ours (3 bounces)
17spp, 5.8min

(c) Extended DS (3 bounces)
83spp, 4.8min

(d) Path traced
Left: 256spp, 16.7min

Right: 1024spp, 75.1min

Fig. 16. The Wolf scene rendered using a point light. We compare our
method with 1 bounce and 3 bounces with the extended dual scattering
method with 3 bounces and the path traced reference. Our method with
1 bounce is already better than the extended dual scattering method in
terms of more accurate color and softer appearance. Moreover, our method
with 3 bounces enables inter-reflections between fibers in the same fur
volume, filling shadows on the belly and the limbs and producing a similar
appearance as the reference, but still achieves a minimum of 3× speed up.
The path tracing with 256 spp is still noisy, as the inset shows.

(a) Extended DS
101spp, 5.0min

(b) Ours
42spp, 5.1min

(c) Path traced
4096spp, 256min

Fig. 17. The Curly hair scene rendered with a point light. We compare our
method (b) with the extended dual scatteringmethod (a) and Yan et al. [2017]
(c). Alhough the overall color/intensity is generated by the extended dual
scattering, it completely fails to capture the correct color distribution. The
highlight is shifted towards the bottom left. In contrast, our method is able
to produce a much more accurate appearance, as compared with the ground
truth, yet is still an order of magnitude faster.

of σa are still crucial to the appearance of the dipole model and all
3 parameters are essential.

Scene configurations. After validation of our neural network train-
ing, we now use the trained neural network to convert parameters
for actual scenes. Most of our scenes are taken from Yan et al. [2017]
to enable direct comparison to their method. We list all the scene
configurations including geometry complexity and performance
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(a) Extended DS
(3 bounces)

162spp, 4.9min

(b) Photon mapped
Equal time, 4.8min

(c) Photon mapped
Equal quality,
122.9min

(d) Ours (1 bounce)
32spp, 2.1min

(e) Ours (2 bounces)
32spp, 3.8min

(f) Ours (3 bounces)
32spp, 4.4min

(g) Path traced
Top: 128spp, 4.1min
Bottom: 1Kspp, 33min

Fig. 18. The Hamster scene rendered using a spot light. The extended dual scattering method with 3 bounces still has the color mismatching issue. However,
our method with 3 bounces closely resembles the path traced reference, but requires many fewer samples and is an order of magnitude faster. Significant
noise can be observed for equal time path tracing when zooming in. The higher-order bounces result in an overhead for our method, since further bounces also
require significant dipole queries. However, since the dipoles’ contributions are smooth, even with the reduced sampling rate, our method still converges fast.
The photon mapping approach produces more noise than ours in equal time, and converges even slower than path tracing.

in Table 3. We compare the scenes with our extended dual scat-
tering and Yan et al. [2017] with path-traced global illumination
as reference, and we describe them next. In all our scenes, we use
3 recursive bounces for our dipole approximation and 4 indirect
samples for irradiance estimation.

Fur pelt. We render the Fur pelt with a blocking sphere casting a
shadow onto it, and compare our rendering with dual scattering. As
demonstrated in Fig. 1, dual scattering only lights the un-blocked
regions, resulting in hard shadow boundaries and no color bleeding.
However, significant scattering effects are observed in the reference,
and our BSSRDF model matches that much more accurately.

Raccoon. The Raccoon scene is rendered with a uniform sky envi-
ronment map with a sharp point approximating the sun. Figure 15
shows decomposed components and corresponding rendering time.
We can see that, most energy is captured by the BSSRDF part, which
soon becomes noiseless as the number of samples increases, thanks
to the smoothness of the dipoles’ contribution.
Wolf. The Wolf scene is to show our dipole model with multi-

ple global illumination bounces. In Fig. 16, we show side by side
comparisons with and without multiple bounces using our method,
rendered using a point light, and compare with the extended dual
scattering, roughly for the same rendering time (∼ 5 min). The ex-
tended dual scattering considers multiple bounces, but still leaves
hard and dark shadows around regions near the belly and the limbs.
Furthermore, it has a significant color difference with the reference,
and it generates hard and solid appearance, especially on the head.
Our method with 1 bounce can already capture accurate color and
soft appearance. With 3 bounces, we are able to generate similar ap-
pearance with the reference. The rendering time increases roughly
linearly with the number of bounces, but we are still at least 3 times
faster, since the path traced result at 256 spp is still noisy when
zooming in.
Hamster. The Hamster scene is rendered using a spot light in

Fig. 18 with increasing numbers of bounces. We also compare with
the extended dual scattering method with 3 bounces, and we can see
that the dense fur fibers soon diminish global scattering from dual

scattering, resulting in an overly-dark appearance. Conversely, our
method with 3 bounces matches the reference much closer and is
still fast. The photonmapping approach [Moon andMarschner 2006]
usesmore photons (100M) than the paths in the path traced reference
for equal quality comparison with our method. And their 6D photon
query becomes inefficient for fur, since the fur fibers spread much
wider than hair in the angular space. So, the performance of the
photon mapping approach is significantly worse than ours.
Furthermore, in the accompanying video, we rotate the camera

and demonstrate that our model doesn’t have to re-generate all
dipole samples over frames, as long as the relative lighting condi-
tion of the model doesn’t change. We also include a moving light
video with fixed and dynamically sampled dipoles over frames. With
fixed samples, there is almost no flickering. Moreover, even with
dynamically sampled dipoles, the flickering is arguably tolerable.
For animated/deformable objects, we believe correlated sample lo-
cations would help, and we leave it to future work.
Curly hair. Our trained neural network can also predict the ap-

pearance of hair. We compare renderings of Curly hair using our
model with medullary index κ = 0.36 against dual scattering and
the path traced reference, as shown in Fig. 17. It demonstrates that
dual scattering fails to capture the actual highlight positions from
scattering, and it always produces a flat shading distribution.
Note that, since most of our results contain spatially-varying

colors and various fur orientations and densities, our method is
capable of handling heterogeneity as a general BSSRDF solution.
We believe that specific complex BSSRDF models, such as multi-
pole [Donner and Jensen 2005] and quantized diffusion [D’Eon and
Irving 2011] will further improve it, and we leave them as future
work.

8 CONCLUSION AND FUTURE WORK
We have presented the first scattering model to efficiently approxi-
mate global illumination within hair and fur volumes. We analyze
and point out failure cases of classic dual scattering, and organize
our model as three components: direct illumination, dual scattering
for unscattered lobes, and BSSRDF for all other scattering events.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 208. Publication date: November 2017.



A BSSRDF Model for Efficient Rendering of Fur with Global Illumination • 208:13

We convert properties from hair and fur fibers to BSSRDF param-
eters by training a neural network on only one scene. Our model
supports various lighting conditions including environment maps,
and enables hair to hair inter-reflections. We show close matches of
our predicted renderings using the dipole method, compared with
the path traced reference of Yan et al. [2017].
In the future, one natural extension to our method is to make it

real-time, since both the dual scattering and the dipole have been
demonstrated as suitable for efficient GPU implementation [d’Eon
et al. 2007]. Another practical direction is to support SRBF lights
[Ren et al. 2010; Xu et al. 2011] to enable real-time hair and fur
rendering under environment illumination. Furthermore, it is also
worth exploring ways to describe the BSSRDF more accurately,
such as learning the diffusion profiles directly, or using anisotropic
dipoles to account for hair and fur fibers’ strong local similarly in
their orientations.
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