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Figure 1: Our error estimation framework takes into account error due to noise and bias in progressive photon mapping. The reference image
is rendered using more than one billion photons, and the rendered image is the result using 15M photons. The noise/bias ratio shows the areas
of the image dominated by noise (in green) or bias (in red). The bounded pixels images show the results corresponding to a desired confidence
in the estimated error value (pixels with bounded error are shown yellow): a higher confidence (90%) provides a conservative per pixel error
estimate, and lower confidence (50%) is useful to estimate the average error. One application of our error estimation framework is automatic
rendering termination with a user-specified error threshold (bottom row: the images show color-coded actual error). Our framework estimates
error without any input from a reference image.

Abstract

We present an error estimation framework for progressive photon
mapping. Although estimating rendering error has been established
for unbiased rendering algorithms, error estimation for biased ren-
dering algorithms has not been investigated well in comparison. We
characterize the error by the sum of a bias estimate and a stochastic
noise bound, which is motivated by stochastic error bounds formu-
lation in biased methods. As a part of our error computation, we
extend progressive photon mapping to operate with smooth kernels.
This enables the calculation of illumination gradients with arbitrary
accuracy, which we use to progressively compute the local bias in
the radiance estimate. We also show how variance can be computed
in progressive photon mapping, which is used to estimate the error
due to noise. As an example application, we show how our error es-
timation can be used to compute images with a given error threshold.
For this example application, our framework only requires the error
threshold and a confidence level to automatically terminate render-
ing. Our results demonstrate how our error estimation framework
works well in realistic synthetic scenes.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: Photon Mapping, Density Estimation

1 Introduction

Global illumination algorithms are increasingly used for predictive
rendering to verify lighting and appearance of a given scene. In
industrial design, rendered images are used to predict the appearance
of new products, architects rely on rendered images to guide the
design of new buildings, lighting engineers use global illumination
to verify the lighting levels in buildings, and lamp manufacturers
use global illumination to predict the lighting patterns from new
lamps. Since global illumination is used to compute lighting and
make decisions based on the computed values, it is critical that the
accuracy of the final result is known to the user. In other words, we
need error estimation of the final result.

Unbiased Monte Carlo ray tracing algorithms are commonly as-
sumed to be the only choice when error estimation is required.
However, unbiased methods are not necessarily the optimal choice
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for accurate lighting simulation. For example, biased methods
are currently considered to be the only technique to robustly han-
dle specular reflection or refraction of caustics from small light
sources [Hachisuka et al. 2008]. These paths are common in light
transport within realistic optical systems such as light bulbs and
headlights, thus it is highly desirable to have error estimation for
biased methods. Moreover, since biased methods, such as photon
mapping [Jensen 2001], are commonly used in commercial and in-
dustrial rendering systems, investigating error estimation for biased
methods will also be useful for a wide range of applications.

Our contribution in this paper is a new error estimation framework
for progressive photon mapping. We derive an error estimation
framework by constructing a bias estimator and noise estimator in
progressive photon mapping. We demonstrate that our estimated
error captures error due to noise and bias under complex light trans-
port. Although error estimation itself is already of high value, as an
example application, we also demonstrate that it can be used to auto-
matically terminate rendering without any subjective trial and error
by the user. Our error estimation induces very little computational
overhead, resulting in negligible increases in render time. The user
can specify a desirable confidence to either obtain per pixel error
estimates or an average error estimate across the image. Figure 1
highlights our results.

2 Related Work

It is well known that error estimation in unbiased Monte Carlo ray
tracing algorithms, such as path tracing [Kajiya 1986] and bidirec-
tional path tracing [Lafortune and Willems 1993; Veach and Guibas
1995], can be done by computing the variance of the solution. This
fact that error in unbiased Monte Carlo methods appears as variance
has been used in many applications. For example, variance is of-
ten used for adaptive sampling in order to find regions with large
error [Lee et al. 1985; Purgathofer 1987; Tamstorf and Jensen 1997].
Assuming errors are distributed according the normal distribution,
it is also possible to approximate a stochastic error bound based
on variance, which provides an estimated range of error based on
a confidence probability provided by the user. Unfortunately, the
same technique cannot be used as an error estimate for biased Monte
Carlo methods, such as photon mapping [Jensen 2001], since these
methods suffer from bias.

Although error estimation in biased methods in general has not been
well-studied compared to unbiased methods, there has been some
effort to derive error estimators for biased methods. An example
includes the error bound used to guide the hierarchical sampling of
many point lights in Lightcuts [Walter et al. 2005] and the first-order
Taylor expansion of error in a hypothetical Lambertian “split-sphere”
environment used by irradiance caching [Ward et al. 1988].

If we focus on photon density estimation, which is our focus as well,
Myszkowski [1997] proposed to use multiple radii during radiance
estimation to estimate bias, and then selected the estimate that mini-
mized an error heuristic. Walter [1998] improved this heuristic error
estimation using a perceptual metric. Bias compensation [Schregle
2003] also uses multiple radii around the same point, but uses a
binary search to find the radius with the minimum heuristic error.
This method estimates bias by assuming the radiance estimate with
the smallest radius is an unbiased estimate. These prior techniques
all use similar error analyses as ours, however, none of them provide
an actual estimate of error as is possible with unbiased methods. Our
method provides an algorithm to estimate error, especially focusing
on progressive photon mapping.

In order to estimate bias, our method estimates derivatives of the
illumination using kernel derivatives in radiance/density estimation.
The same idea is commonly used in standard density estimation

methods [Silverman 1986]; however, the key difference is that our
derivation is based on progressive density estimation proposed by
Hachisuka et al [2008]. As with progressive density estimation, our
derivative estimates converge to the correct solution with a bounded
memory consumption. This is not the case for standard density
estimation methods, which require storing an infinite number of
samples to obtain the correct solution. Gradient computation of
light transport itself has been studied in previous work [Ward and
Heckbert 1992; Ramamoorthi et al. 2007; Jarosz et al. 2008], but we
introduce an alternative method which integrates easily in our error
estimation framework.

There are several techniques that reduce the bias of photon density
estimation [Hey and Purgathofer 2002; Havran et al. 2005; Herzog
et al. 2007]. Although it is conceivable to use our bias estimate for
bias reduction, we do not target this application in our paper; instead,
our goal is to estimate the bias with reasonable accuracy for error
estimation in rendering.

3 Progressive Photon Mapping

Since our error estimation is based on progressive photon mapping,
we briefly outline the algorithm in this section. Progressive photon
mapping [Hachisuka et al. 2008] solves the rendering equation using
a multi-pass approach. The first pass consists of ray tracing the
scene and storing all the non-specular visible hit points seen along
each ray path in a data structure of measurement points.

The subsequent passes perform photon tracing. During each photon
tracing pass, statistics about the photons are accumulated by the
measurement points. These accumulated statistics refine radiance
estimates at the measurement points in such a way that the radiance
estimate is consistent and therefore converges to the correct solution
in the limit.

The primary statistics that each measurement point maintains include
the current search radius R, the accumulated photon count N , and
the reflected flux τ . Note that Hachisuka et al. used τ to express
un-normalized accumulated flux; however, to obtain a consistent
notation within this paper, we instead use τ to express normalized
flux. We summarize our notation in Table 1.

Symbol Description

x Position of a measurement point
~ω Outgoing direction of a measurement point
Ne Number of emitted photons in each pass
Ne

i Total number of emitted photons after i passes
Ni Accumulated intercepted photon count at x after pass i
Mi+1 Number of intercepted photons at x during pass i+ 1

Ri Radius at photon pass i
α Fraction of photons kept after each pass

τi(x, ~ω) Flux withinRi(x) after pass i
τ̃i+1(x, ~ω) Flux withinRi(x) using only photons from pass i
τ ′
i+1(x, ~ω) Flux withinRi(x) in pass i+ 1 (before radius reduction)
τi+1(x, ~ω) Flux withinRi+1(x) after pass i+ 1 (after radius reduction)

Table 1: Definitions of quantities used throughout this paper.

Each measurement point tracks the photons which fall within its
search radius R and accumulates their power into τ . After pass i,
the radiance at a measurement point is approximated as:

Li(x, ~ω) ≈ τi(x, ~ω)

πRi(x)2
. (1)

After the first photon tracing pass, τ1(x, ~ω) stores the flux premulti-
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plied by the BRDF from all N1 photons landed within radius R1:

τ1(x, ~ω) =
1

Ne
1

N1∑
p=1

fr(x, ~ω, ~ωp)Φp(xp, ~ωp), (2)

where ~ω is the outgoing direction at the measurement point, ~ωp is the
incoming direction of the photon, fr is the BRDF, and Φ(xp, ~ωp)
is the flux carried by photon p. The number of photons emitted
in each pass is Ne, and we use Ne

i = iNe to express the total
number of emitted photons up to and including pass i. Note that the
radius R1 and number of intercepted photons N1 both depend on
the measurement point x, but we omit these dependencies in our
notation for simplicity.

After the first pass, these statistics are refined by performing ad-
ditional photon tracing passes, each emitting Ne more photons.
During pass i + 1, Mi+1 additional photons are intercepted at x.
The flux from just these additional photons would be:

τ̃i+1(x, ~ω) =
1

Ne

Mi+1∑
p=1

fr(x, ~ω, ~ωp)Φp(xp, ~ωp). (3)

If we used all Mi+1 photons and kept the radius fixed, we could
obtain an improved estimate for the flux using allNi+Mi+1 photons
by just accumulating this additional flux as:

τ ′i+1(x, ~ω) =
1

Ne
i+1

Ni+Mi+1∑
p=1

fr(x, ~ω, ~ωp)Φp(xp, ~ωp),

=
Ne
i τi +Neτ̃i+1

Ne
i+1

=
iτi + τ̃i+1

i+ 1
.

(4)

However, to obtain a consistent estimator, progressive photon map-
ping must ensure that the bias and the variance are reduced at each
iteration. This is accomplished by reducing the radius and statis-
tically keeping only a fraction of the intercepted photons at each
iteration. A single parameter α ∈ (0, 1) is used to control the
fraction of photons to keep from each pass. If Mi+1 photons are
found within search radius Ri during photon pass i + 1, the new
accumulated photon count is computed as:

Ni+1 = Ni + αMi+1, (5)

and the reduced radius is computed as:

Ri+1 = Ri

√
Ni + αMi+1

Ni +Mi+1
. (6)

Due to this radius reduction, we must account for the flux of the
photons that now fall outside the reduced radius. To account for this,
the accumulated flux at the next iteration is computed as:

τi+1(x, ~ω) = τ ′i+1(x, ~ω)
Ri+1

2

Ri
2 = τ ′i+1(x, ~ω)

Ni + αMi+1

Ni +Mi+1
.

(7)

Traditional photon mapping can be considered as a special case of
progressive photon mapping where the radius Ri(x) stays the same
(α = 1.0).

4 Error Estimation Framework

It is well known that stochastic error bounds in unbiased Monte
Carlo rendering methods can be estimated using the variance of the

estimate1. The reason for this is that the error is caused purely by
noise due to stochastic sampling. However, biased Monte Carlo
rendering methods have bias in addition to noise. Bias is the differ-
ence between the estimated radiance without noise and the correct
radiance. Since photon density estimation, including progressive
photon mapping, is a biased rendering method, we need to take into
account both bias and noise in the error estimate.

In biased methods, the error can be expressed as the sum of bias Bi
of the estimate and noise Ni due to sampling (we denote the exact
bias as Bi since bias is changing at each iteration in progressive
photon mapping):

Li − L = Bi +Ni, (8)

where Li is the estimated radiance and L is the true radiance.
This bias-noise decomposition has been used in prior work (such
as [Schregle 2003]) as well and it is applicable to any biased Monte
Carlo methods, including progressive photon mapping. Now, as-
suming we know bias Bi and sample variance Vi, the central limit
theorem states that for an infinite number of samples:

Li − L−Bi√
Vi

d→ N(0, 1), (9)

where we use d→ to denote that the distribution of the left-hand-side
converges to the standard normal distribution N(0, 1). Note that
this does not directly estimate error, but rather estimates the error
distribution. Although this relationship is valid only for an infinite
number of samples, it has been shown that assuming this is valid
for a finite number of samples is reasonable in practice [Tamstorf
and Jensen 1997; Fiorio 2004]. This also indicates that the variance-
based error estimation in unbiased methods is fundamentally an
approximation unless we use an infinite number of samples. Our
error estimation framework is also based on a few approximations
as we will describe throughout the paper.

Based on the error distribution, we can derive a stochastic bound
(confidence interval) of radiance estimation using the t-distribution:

P (−Ei < Li − L−Bi < Ei) = 1− β

Ei(x) = t

(
i, 1− β

2

)√
Vi(x)

i
,

(10)

where t
(
i, 1− β

2

)
is the 1 − β

2
percentile of the t-distribution

with degree i. The t-distribution describes the distribution of the
quantity Li−L−Bi√

iVi

. This gives the interval [−Ei, Ei] that contains

Li −L−Bi with probability 1− β. Note that this is a well-known
derivation and interested readers should refer to, for example, Geert-
sema [1970]. It is also important to note that the interval [−Ei, Ei]
is not for “error”, but rather for “error - bias” at this point.

In order to estimate the interval for error, we shift both the value
Li − L−Bi and the interval [−Ei, Ei] by adding Bi:

P (−Ei < Li − L−Bi < Ei)

= P (−Ei +Bi < Li − L < Ei +Bi) .
(11)

1Note that there is a critical difference between a stochastic bound and
a deterministic bound. A deterministic bound always correctly bounds the
value, but a stochastic bound only correctly bounds with some probability.
This probability is usually provided by the user as a desirable confidence in
the bound. Standard variance-based methods in fact compute a stochastic
bound and, unfortunately, there is little hope of obtaining a deterministic
bound for Monte Carlo estimation. More information on this concept can be
found in statistics textbook such as Hastie et al. [2001].
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Note that the inequalities inside are equivalent. This operation is
valid because bias Bi, by definition, is a deterministic variable since
bias is a difference between an expected value and the correct value
which are both deterministic. In other words, bias just affects error
as a uniform, constant shift of the error distribution.

The above signed confidence-interval can be used as-is, however,
it is sometimes desirable to obtain a single value as the stochastic
bound of absolute error. In order to obtain such an expression, we
extend the interval by taking the absolute value of the bias:

P (−Ei +Bi < Li − L < Ei +Bi)

≤ P (−Ei − |Bi| < Li − L < Ei + |Bi|)
= P (|Li − L| < Ei + |Bi|) ,

(12)

which provides Ei + |Bi| as a single-valued stochastic error bound
of the absolute error. This theoretically gives us a confidence interval
with larger confidence than the user-specified confidence 1−β. Note
that the above equations do not use the bound of bias, but bias itself.

Dependence of error on the absolute intensity of radiance is often not
desirable since the human visual system is more sensitive to contrast
than absolute differences in intensity [Glassner 1995]. Therefore,
we divide the interval by the estimated radiance to obtain the relative
stochastic error bound:

P (|Li − L| < Ei + |Bi|) = P

(∣∣∣∣Li − LLi

∣∣∣∣ < Ei + |Bi|
Li

)
.

(13)

The interval is
[
0, Ei+|Bi|

Li

]
with confidence larger than 1−β. Note

that the above Equation 8 to Equation 13 are theoretically valid only
if we know the exact bias and the exact sampled variance.

The challenge here is that both the exact biasBi and the exact sample
variance Vi are unknown. We therefore need to rely on estimations
of bias and variance. Estimation of bias Bi has been investigated
by previous work, but none of them can be extended to progressive
photon mapping. Moreover, we do not have an estimator of variance
Vi in progressive photon mapping. To be concrete, progressive den-
sity estimation has a different formulation than standard radiance
estimation and samples are correlated due to radius reduction. We
therefore have to consider the correlation between samples when es-
timating variance. The key contributions of our work are estimators
of Bi and Vi which we describe in the following sections. Note that,
in practice, we cannot obtain the exact stochastic bounds as defined
above due to approximations in bias and variance estimators.

4.1 Bias Estimation

We first show that the bias in progressive radiance estimation is
actually the average of bias induced by the kernel radii at each
iteration

Bi =
1

i

i∑
j=1

Bp,j , (14)

where Bp,j is bias of the radiance estimate using only the photons
from the j th pass. We then introduce a bias estimator used in standard
density estimation, which is applied for progressive photon mapping.

To obtain Equation 14, we start by expanding the estimated radiance
Lj+1(x) at the j + 1th iteration using the refinement procedure

described in Section 3:

Lj+1(x) =
τj+1(x, ~ω)

πRj+1(x)2
=
Rj+1(x)2

Rj(x)2
τ ′j+1(x, ~ω)

πRj+1(x)2

=
jτj(x, ~ω) + τ̃j+1(x, ~ω)

j + 1

1

πRj(x)2

=
1

j + 1

(
j
τj(x, ~ω)

πRj(x)2
+
τ̃j+1(x, ~ω)

πRj(x)2

)
=

1

j + 1
(jLj(x) + Lp,j(x)) ,

(15)

where Lp,j(x) is radiance estimate using only the photons from
the j th pass. Note that τ̃j+1(x,~ω)

πRj(x)2
= Lp,j(x) because τ̃j+1(x, ~ω)

includes the intercepted photons only at the j + 1th iteration before
the radius reduction and the radius reduction happens after flux
accumulation (i.e., the radius used in the photon query is Rj(x)).

The key observation is thatLp,j is equivalent to the radiance estimate
using a standard radiance estimation with radius Rj because it uses
photons only from the j th pass. Therefore, we can write down
E[Lp,j ] = L(x) +Bp,j based on the definition of bias in standard
radiance estimation. Using Equation 15 recursively, the progressive
radiance estimate Li(x) is expressed as:

E [Li(x)] = E

[
1

i

i∑
j=1

Lp,j(x)

]
= L(x) +Bi (16)

=
1

i

i∑
j=1

(L(x) +Bp,j) = L(x) +
1

i

i∑
j=1

Bp,j .

Finally, subtracting L(x) from both sides gives us Equation 14.

Silverman [1986] showed that for standard density estimation bias
can be approximated using the Laplacian of the density. We can
apply this to each bias value Bp,j as

Bp,j =
1

2
Rj(x)2k2∇2Lp,j(x) +O

(∑
k

∂kLp,j(xk)

∂xkk
Rj(x)4

)

≈ 1

2
Rj(x)2k2∇2Lp,j(x),

(17)

where k2 =
∫
t2K(t)~dt is a constant derived from the kernel K(t)

(see Appendix A for details). Note that we drop the residual term
proportional to Rj(x)4 in our estimation, thus our bias estimator
always estimates an approximation of the true bias.

Unfortunately, we cannot directly use this approximation for pro-
gressive photon mapping. This approximation needs to estimate
∇2Lp,j(x) at each iteration and combine Equation 17 and Equa-
tion 14 to compute the Laplacian of the progressive estimate
∇2Li(x). However, estimating and storing ∇2Lp,j(x) at each
iteration in progressive radiance estimation is not tractable since
this would require unbounded memory and we use a relatively small
number of photons per iteration. Therefore, we propose the fol-
lowing approximation of the Laplacian of the progressive estimate
∇2Li(x) which eliminates the need to store the Laplacian of each
iteration.

First, substituting Equation 17 into Equation 14, we obtain

Bi =
1

i

i∑
j=1

Bp,j ≈
1

i

i∑
j=1

1

2
Rj(x)2k2∇2Lp,j(x). (18)
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Figure 2: The graph and image in (a) show the cubic ramp function (3t2 − 2t3 with t = clamp(x−1
2

) where y = clamp(x) clamps x into
[0, 1]). The graphs in (b) show comparisons of the estimated bias and the actual bias in the cubic ramp scene. The bias estimate uses radius
3.0 and 0.75. The RMS errors of the bias estimation are 3.751× 10−3 and 4.746× 10−4.

We approximate the summation as (note that we use Ri(x) not
Rj(x))

≈ 1

2
Ri(x)2k2

(
1

i

i∑
j=1

∇2Lp,j(x)

)
. (19)

Finally, as with radiance estimation in Equation 16, we can ex-
pand the Laplacian of the progressive estimate as ∇2Li(x) =
1
i

∑i
j=1∇

2Lp,j(x) using the recursion relation in Equation 15.
This provides the following identity

=
1

2
Ri(x)2k2

(
1

i

i∑
j=1

∇2Lp,j(x)

)

=
1

2
Ri(x)2k2∇2Li(x)

= B′i ≈ Bi,

(20)

where we denoted our approximation of bias as B′i. As a result, we
can approximate the exact bias Bi just by computing a progressive
estimate of ∇2Li(x). We will describe more details for how to
estimate∇2Li(x) in Section 5.

We tested our bias estimation for progressive photon mapping on
a scene where we mimic a soft shadow boundary using an analytic
cubic smoothstep function. We show a visualization of the resulting
radiance function in Figure 2(a) while in Figure 2(b) we compare
the actual bias to our estimated bias. In this scene, samples are
generated using the cubic smoothstep function with importance
sampling. Although the estimated bias does not exactly predict
the actual bias, it captures two peaks of bias around edges of the
smoothstep function as well as zero bias in the smooth region.

4.2 Variance Estimation

In standard kernel density estimation, variance is approximated
as [Silverman 1986]:

Vi ≈
1

N i
eR

2
i

k3Li(x), (21)

where k3 =
∫
K(t)2 ~dt. This approximation assumes that samples

are independent and identically distributed (i.i.d.). Since this is true
in the case of traditional photon mapping, this approximation can be
used directly for photon mapping.

Unfortunately, this is not directly usable in progressive radiance
estimation. Note that the samples in progressive radiance estimation
are each of the radiance estimations using photons from only the
j th iteration, Lp,j . Since the radius reduction however depends on

all previous photons, Lp,j are not statistically independent. Further-
more, each Lp,j gives us a biased estimation with a different radius
Rj , thus Lp,j are not identically distributed.

The key point is that photon tracing itself is statistically independent
between each iteration in progressive photon mapping. The only
dependence between samples is caused by the radius reduction.
Therefore, instead of using samples (Lp,j) directly, we use bias-
corrected samples Lp,j − Bp,j ≈ Lp,j − B′j in order to estimate
variance. The bias-corrected samples are expected to be closer to
statistically independent since dependence on radius is removed by
Bp,j , and identically distributed because Lp,j −Bp,j is distributed
according to the true radiance L.

Using Lp,j −Bj , we use the following standard procedure to esti-
mate sample variance Vi at each iteration:

Vi ≈

∑i
j=1 xj

2 −
(∑i

j=1 xj
)2
/i

i− 1
(22)

where we use xj = Lp,j −B′j as samples.

Note that Lp,j −B′j is not strictly unbiased or independent because
B′j is just an approximation of true bias. However, we found that
the effect of this approximation is not statistically significant in
practice through numerical experiments. Figure 3 shows that the
autocorrelation of bias-corrected samples is almost 0 compared to
the uncorrected samples. This indicates that the samples can be
considered independent. Figure 3 furthermore shows that the bias
correction makes the distribution of noise closer to the Gaussian
distribution with mean 0, which is the distribution of ideal i.i.d.
samples.

5 Kernel-based Progressive Photon Mapping

The previously described bias estimation method relies on the deriva-
tives of radiance,∇2Li(x). To use this method, we must therefore
estimate derivatives of radiance as well as radiance itself during
rendering. In traditional photon mapping, derivatives can be easily
estimated by just using derivatives of the kernel. However, esti-
mation based on this method does not converge into the correct
derivatives of radiance without using an infinite amount of memory
(e.g. storing an infinite number of photons or using an infinite mesh
tessellation).

In this section, we provide a new, generalized formulation of pro-
gressive radiance estimation which allows for arbitrary smooth ker-
nels. We show that we can relax the “locally uniform density” as-
sumption used in the original progressive photon mapping algo-
rithm [Hachisuka et al. 2008], and that the kernel should be radially
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symmetric and Cn continuous at the boundary to be able to esti-
mate nth order derivatives. This generalization makes estimation of
derivatives straightforward and convergent, which in turn allows us
to estimate bias more accurately.

5.1 Kernel-based Flux Correction

Kernel-based density estimation is a standard extension to tradi-
tional density estimation where the contribution of each sample in
the density estimate is weighted by a, typically smooth, kernel K
around the query location. In contrast to standard radiance estima-
tion methods, simply replacing the constant kernel in the original
progressive radiance estimate may not work. Specifically, since the
radius in progressive radiance estimation changes, the accumulated
flux needs to be corrected after radius reduction. To adapt kernel
density estimation to progressive photon mapping, we need to derive
an equation similar to Equation 7 (relating the accumulated flux
before reducing the radius, τ ′i+1, with the accumulated flux after
reducing the radius, τi+1) but in the presence of a weighting kernel
K.

The accumulated flux before reducing the radius can be expressed
in the continuous setting as

τ ′i+1 =

∫ 2π

0

∫ Ri

0

K

(
r

Ri
, θ

)
Lr(r, θ, ~ω) r dr dθ. (23)

We parametrized radiance over a circle using polar coordinates. Note
that τ ′i+1 is a function of (x, ~ω), and Ri is a function of x, but we
drop this dependence in our notation for simplicity.

The accumulated flux with a reduced radius Ri+1 is:

τi+1 =

∫ 2π

0

∫ Ri+1

0

K

(
r

Ri+1
, θ

)
Lr(r, θ, ~ω) r dr dθ. (24)

Given these two equations, we can express τi+1 in terms of τ ′i+1 as:

τi+1 = τ ′i+1

∫ 2π

0

∫ Ri+1

0
K
(

r
Ri+1

, θ
)
Lr(r, θ, ~ω) r dr dθ∫ 2π

0

∫ Ri

0
K
(
r
Ri
, θ
)
Lr(r, θ, ~ω) r dr dθ

. (25)

We can simplify this expression by performing a change of variable

with t = r
Ri

, dr = Ri dt, and analogously for Ri+1:

τi+1 = τ ′i+1

∫ 2π

0

∫ 1

0
K(t, θ)Lr(tRi+1, θ, ~ω) tRi+1

2 dt dθ∫ 2π

0

∫ 1

0
K(t, θ)Lr(tRi, θ, ~ω) tRi

2 dt dθ
,

= τ ′i+1
Ri+1

2

Ri
2

∫ 2π

0

∫ 1

0
K(t, θ)Lr(tRi+1, θ, ~ω) t dt dθ∫ 2π

0

∫ 1

0
K(t, θ)Lr(tRi, θ, ~ω) t dt dθ

.

(26)

Assuming that a kernel is radially symmetric K(t, θ) = K(t), the
above expression can be further simplified by swapping the order of
integration:

τi+1 = τ ′i+1
Ri+1

2

Ri
2

∫ 1

0
K(t) t

∫ 2π

0
Lr(tRi+1, θ, ~ω) dθ dt∫ 1

0
K(t) t

∫ 2π

0
Lr(tRi, θ, ~ω) dθ dt

. (27)

Finally, to simplify this expression further, we assume that the inte-
grated radial distribution of radiance is locally constant such that

C =

∫ 2π

0

Lr(tRi, θ, ~ω) dθ =

∫ 2π

0

Lr(tRi+1, θ, ~ω) dθ, (28)

for some constant C. This assumption is similar, but not as strict
as the “locally uniform density” assumption used in the original
progressive photon mapping algorithm [Hachisuka et al. 2008]. Al-
though the end result looks similar to the original progressive photon
mapping, this distinction is crucial to use a smooth kernel function
as well as its derivatives. Note also that the original assumption
implies zero derivatives, which makes it impossible to use for the
derivative estimation in our framework.

Using our new assumption, Equation 27 can be simplified to:

τi+1 = τ ′i+1
Ri+1

2

Ri
2

������∫ 1

0
K(t) t C dt

������∫ 1

0
K(t) t C dt

= τ ′i+1
Ri+1

2

Ri
2 . (29)

This ends up being the same flux correction as in regular progressive
photon mapping in Equation 7; however, it uses a weaker assumption
and can be used with arbitrary radially symmetric kernels. Fortu-
nately, it also means that the only change in terms of implementation
is to weight each photon by a kernel function, thus it is straightfor-
ward to implement.

5.2 Progressive Radiance Derivative Estimation

The kernel-based estimation gives us an elegant way to estimate
derivatives. Computing the derivatives simply involves replacing the
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Figure 4: Visualizations of radiance including 1st and 2nd order
derivatives for a simple scene containing a Lambertian plane and a
point light source. We show the estimated values using progressive
photon mapping with 10K (orange) and 1M (green) stored photons,
and compare to the analytic solutions (black). As more photons are
used, the results converge to the analytic solutions.

kernel with a corresponding derivative kernel. In the following, we
describe how to compute the first-order derivative for simplicity.

The first-order derivative of the radiance estimate can be computed
directly as:

∇L(x, ~ω) ≈ ∇
(

τi
k1R2

i

)
=
∇τi
k1R2

i

, (30)

where the derivative of the accumulated flux is:

∇τi =
1

N e
i

∇

(
Ni∑
p=1

K(t) fr(x, ~ω, ~ωp) Φp(xp, ~ωp)

)

=
1

N e
i

Ni∑
p=1

(∇K) fr Φp +K (∇fr) Φp

=
1

N e
i

Ni∑
p=1

(∇K) fr Φp.

(31)

We always use the gradient operator ∇ to denote a gradient with
respect to the position parameter x, and the ∇Φp term from the
product rule is omitted above because∇Φp = 0. The∇fr term is
also omitted since the BRDF within the radius is locally constant
(i.e., BRDF is defined by the measurement point) thus∇fr = 0.

Higher-order derivatives can be derived in exactly the same way by
simply taking higher-order derivatives of the kernel function. We
use the second order derivatives ∇2Li(x) in order to estimate the
bias in Equation 17.

In order to estimate derivatives in a progressive manner, we need
to express the accumulated flux derivatives after radius reduction,
∇τi+1, in terms of the accumulated value before radius reduction,
∇τ ′i+1. This relation can be established by differentiating Equa-
tion 29:

∇τi+1 = ∇
(
τ ′i+1

R2
i

R2
i+1

)
= (∇τ ′i+1)

R2
i

R2
i+1

. (32)

Hence, any order flux derivative is accumulated using the ratio of
the squared radii, just like accumulated flux. Again, the only change
in terms of implementation is replacing the kernel with derivatives
of the kernel.

One condition on the kernel is that derivatives have to be finite in
order for this computation to be meaningful. For example, if we
use a Gaussian by cutting off the kernel to a finite radius, this gives
us infinite derivatives along the edge of the kernel, which is not
useful. The same thing happens with a Epanechnikov kernel, which
is a popular choice in standard density estimation. We therefore
found that the kernel has to be Cn continuous with 0 at the boundary

for computing nth order derivatives (i.e., the nth derivative of the
kernel must go to 0 at the edge). We provide an example of a kernel
function that satisfies this condition in Appendix A.

In order to investigate the accuracy of the progressive kernel radi-
ance estimate and the radiance derivative estimate, we used a simple
scene with a point light source, where all the values can be computed
analytically in Figure 4. The estimated radiance values match the
analytical solution very closely with only 10K stored photons. Al-
though the radiance derivative estimates are noisy with 10K stored
photons, they are converging to the analytical solution with 1M
stored photons.

6 Results

We have implemented our error estimation on top of an implementa-
tion of the progressive photon mapping algorithm. All results were
computed on a 2.4GHz Intel Core 2 Q6600 using one core. In all
examples, we used the parameter α = 0.8 in the progressive photon
mapping algorithm.

Figure 5 is an analytic investigation of our error estimation. We used
the cubic ramp scene described in Figure 2 with 640000 samples
and an initial radius of 1.5. The user-specified confidence is 1 −
β = 0.95. The graph (b) shows that the estimated error is in
fact above the actual error in almost all locations as specified. We
further investigated the influence of bias estimation and noise bound
estimation by plotting each of these components separately in the
graph (c). Note that our framework does not estimate bounds of bias,
but bias itself. This graph shows that the bias estimation captures
error due to bias around the slope of the function, whereas the noise
bound estimation captures error due to sampling noise around the
flat region of the function.

We tested our framework on three example scenes. The reference
renderings are shown in Figure 8. Each iteration uses 15k emitted
photons and the confidence was specified at 90%. The first scene
is a Cornell box with a glass sphere and a metal sphere. Here
noise dominates the error because the scene is composed of mostly
large flat regions of fairly uniform illumination. The second scene
consists of three flashlights models. We modeled the filament, lens
and reflector of the flashlight in order to simulate a realistic lighting
pattern. This scene is expected to have larger bias due to sharp
caustics from the flashlights. The third scene is a room with lighting
fixtures. Each lighting fixture consists of a filament, a glass casing,
and reflectors which replicates light transport of real-world lighting
fixtures. This scene contains both sharp illumination features due
to caustics as well as flat and continuous illumination, which is
a realistic mixture of bias and noise in error. Note that both the
flashlights scene and the room scene have light paths which are
difficult for unbiased rendering methods to handle (such as an SDS
path from a very small light source [Hachisuka et al. 2008]).

Figure 8 shows behavior of the actual error and the estimated error
for the test scenes. We picked three points to investigate the actual
error and the estimated error as shown in the leftmost column of
Figure 8. One might notice that our estimated error does not bound
actual error at some points, such as the point A in the room scene.
This is indeed the expected behavior because our error estimation
is motivated by stochastic error bounds. Stochastic error bounds,
by definition, bound the actual error with some probability, so even
if our error estimate is perfect, some points where the actual error
is higher than the estimation are to be expected. In practice, since
bias estimation is an approximation, it may also cause extra overesti-
mation or underestimation of the actual error in addition to what is
expected from exact stochastic error bounds.

What is important in practice is whether the estimated error respect
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Figure 5: Error estimation on the cubic ramp scene. The graphs show (a) estimated density and actual density, (b) estimated error (95%) and
actual error, and (c) estimated bias and estimated noise bound with 640000 samples. The estimated bias dominates the error estimation around
the slope, while the estimated noise bound dominates the error estimation around the flat region.

the user-specified confidence. In order to check this, we computed
the actual confidence on the test scenes in Figure 7. The ideal behav-
ior is that the actual confidence stays at the user-specified confidence
all the time. We calculate the actual confidence as the percentage of
all error estimates that are above the true errors obtained using the
reference image. We tested 50% and 90% as the user-specified confi-
dence. Although the calcuated confidence is not exactly the same as
the specified confidence, the deviation from the user-specified confi-
dence is within 5% across many iterations for both 50% and 90% in
difference scenes. The yellow and blue images in Figure 1 visualize
whether estimated error is above error per pixel (yellow: bounded,
blue: not bounded). Note also that error estimation itself becomes
more reliable as we add more samples because the magnitude of the
error estimate decreases.

Figure 6 shows the ratio of estimated bias to estimated noise bound
using 15M photons. The estimated error captures noise in flat regions
as well as bias due to sharp features in practical scenes. The bias-
to-noise ratio images demonstrate the importance of each of these
components to our overall error estimate. The resulting images show
bias estimation dominates the error estimation around sharp features
(shown as red) and the noise bound estimation dominates the error
estimation within flat regions (shown as green).

6.1 Rendering Termination

Predicting a sufficient total number of photons to obtain a desired
quality for a particular scene is difficult. Unfortunately, this is
currently set by tedious trial-and-error by the user. As an example
application of our error estimation, we propose an automatic way
to stop the rendering process without specifying the total number
of photons or the total render time. Instead, we stop the rendering
process when the average estimated error over the image is below
a user specified threshold. We believe that this provides a more
meaningful termination criterion, which allows the user to focus
on the quality of the resulting image and not abstract parameters
involved in the rendering algorithm.

At each iteration, we simply compute the average estimated error

Scene Triangles E thr = 0.5 E thr = 0.25 E thr = 0.125 E thr = 0.0625
Cornell Box 9666 6 55 340 1969
Flashlights 38118 2 36 229 1410

Room 181168 13 93 570 3465

Table 2: The number of triangles in each scene and the number of
iterations to reach the specified error threshold. Note that processing
time for each iteration is different for each scene.

Figure 6: The ratio of the estimated bias and the estimated noise
bound in error estimation with 15M emitted photons. The red pixel
indicates the bias is dominant and the green pixel indicates the noise
is dominant in the estimated error. The result for the flashlights
scene is in Figure 1.

over all the measurement points:

Eave =
1

Nm

Nm∑
j=1

Ei(xj) + |B′i(xj)|
Li(xj)

, (33)

where Nm is the number of measurement points. The rendering
process stops when Eave ≤ E thr for a given error threshold E thr.
Note that we could even use our error estimation to individually
terminate the computation of each measurement point since the error
is estimated per measurement point. Here, we use average error as
a proof of concept that shows our error estimation is useful for a
practical application. Since we are interested in the average error,
not per-pixel error, we choose rather lower 50% confidence in this
application in order to get tighter error estimation.

Figure 9(a) shows a sequence of color-coded images of actual er-
ror with different user-specified thresholds. We plot the graphs of
actual average relative error and the average of estimated error in
Figure 9(b). Although we used 50% confidence to terminate the
rendering process, we also show the resulting estimated average
error using 90% confidence for reference. The average of our er-
ror estimate using 50% confidence successfully predicts, without
any user input other than the threshold, that different scenes need a
different number of iterations to obtain sufficient quality.

Table 2 shows the number of iterations used for achieving the spec-
ified threshold. Note that, even though the flashlight scene has
more triangles than the Cornell box scene, the number of iterations
to achieve the same threshold is less than that of the Cornell box.
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Figure 7: Calculated confidence of the estimated error in different
scenes. The confidence is calculated as the percentage of estimated
error that is actually larger than actual error. The graph on the top
uses 50% and the graph on the bottom uses 90% as the user-specified
confidence.

The actual average relative errors achieved with E thr = 0.0625 are
0.0465, 0.0448, 0.0437 for the Cornell box scene, the flashlight
scene, and the room scene respectively. Although the statement
that different scenes need different number of samples sound trivial,
we do not know how many samples are needed unless we actually
render an image. We believe that even this simple application will
shed light on theoretical analysis of the convergence behavior of
progressive density estimation, which is still unknown.

Since our error estimation framework does not need additional pho-
ton tracing or range query, runtime overhead due to the error esti-
mation is very small. In our implementation, each pass including
the error estimation took 681ms, 1291ms, and 720ms on average
for the Cornell box scene, the flashlight scene, and the room scene
respectively, and the overhead due to the error estimation are 2.2ms,
5.9ms, and 3.3ms which are all less than 1% of the rendering time
without error estimation.

7 Discussion and Limitation

Our error estimation framework depends on the number of assump-
tions. We discuss some issues due to those assumptions we made in
this section to help readers understand the limitations of our method.
In general, our experience along with previous work concludes that
making assumptions or approximations is probably inevitable and
providing theoretical guarantees that error estimation works is chal-
lenging.

First, the derivations in Equation 10 are exact only if we know the
true bias and variance. Since we approximated bias and variance in
our error estimation with a finite number of samples, the resulting
error estimation can be arbitrary far away from the exact error. This
might seem to be a critical flaw as an error estimation framework,

however, variance-based error estimation in unbiased methods have
also made the approximation of assuming normal distribution of er-
ror, which is not usually the case. Even with such an approximation,
variance-based error estimation has been used in many practical
applications as we mentioned in Section 2. We therefore believe
that using approximations does not make our error estimation com-
pletely useless in practice. Notice however that we do not claim our
framework works well in any possible scene setting.

Second, related to the above issue, our bias estimation is not a
consistent estimator of the true bias (i.e., does not give us the true
bias in the limit). This in turn affects variance estimation, which
assumes i.i.d. samples after bias correction. We approximate bias
using the Laplacian of radiance (Equation 17) and we introduced
one additional approximation between Equations 18 and 19 in order
to make bias estimation practical. The approximation by Laplacian
can cause significant error in bias estimation (either underestimation
or overestimation) if the radiance distribution contains significant
higher order derivatives (higher or equal to 4th order) and the radius
is relatively large. We believe accurate bias estimation, in general,
is an interesting direction of future work, especially since it can be
useful for bias reduction, and not only error estimation.

Finally, our application of error estimation for automatic rendering
termination may not be well-suited for some usage. For example, if
we want to avoid generating redundant samples by terminating the
rendering process after the desired rendering error is achieved, our
application will result in oversampling due to slight overestimation
of the rendering error. In such cases, more accurate error estimation
is needed to avoid oversampling. Although our overestimation
is generally around 1.4 times throughout many iterations in our
experiments as in Section 6.1, this could mean taking at least 1.42 =
1.96 times more samples than absolutely necessary, according to
O(i−

1
2 ) error convergence rate of Monte Carlo integration. Not

generating redundant samples would require the estimated error to
be equal to the exact error, which is challenging to accomplish in
general.

8 Conclusion

We have presented an error estimation framework for progressive
photon mapping, which is robust to a wide range of light paths.
Based on the derivations of stochastic error bounds, we characterized
error using estimated bias and an estimated noise bound. We estimate
bias using derivatives of radiance, and for this purpose we have
extended the progressive radiance estimate to work with arbitrary
smooth kernels. Using a kernel-based approach we can compute the
derivatives of radiance by using the derivatives of the kernel. We
have shown that this bias estimate can be used to construct a variance
estimator for the progressive radiance estimate. The estimated error
captures error due to both bias and noise under complex illumination
given user-defined confidence. We have demonstrated that our error
estimate can be used to automatically stop the rendering process.
We believe that our work is the first step towards answering the
important question: “How many photons are needed to render this
scene?”.

There are several possible areas of future work that we would like to
explore. Given an error estimate, we can try to accelerate progressive
photon mapping using adaptive sampling by tracing photons into the
parts of the scene where the error is large. It would be interesting
to enhance the error estimate with a perceptual metric such as Ra-
masubramanian et al. [1999]. We would also like to investigate if
the error estimate can be extended to include stochastic progressive
photon mapping [Hachisuka and Jensen 2009], which would need
estimation of average bias over an unknown region.
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Figure 8: Error estimation on test scenes. Each row shows the reference rendering (left), as well as the actual error (red) and estimated error
(green) at the three points (a,b,c) shown in the reference images. The specified confidence is 90%, and each iteration uses 15k photons.
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A Kernels

In order to compute the first and second order derivatives, the kernel
function must be at least twice differentiable. We use a sixth-order
smooth kernel [Perlin 2002] for the progressive kernel radiance
estimation. The kernel is defined as:

K(t) = 1− 6t5 + 15t4 − 10t3. (34)

Since K is a polynomial, its derivatives can easily be computed as:

K′(t) = −30t4 + 60t3 − 30t2, K′′(t) = −120t3 + 180t2 − 60t.

The normalization constants are k1 = 2π
7

, and k2 = 10π
168

.

A Progressive Error Estimation Framework for Photon Density Estimation        •        144:11

ACM Transactions on Graphics, Vol. 29, No. 6, Article 144, Publication date: December 2010.






