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Figure 1: We present a novel learning-based photon mapping (PM) method that can be used to synthesize photorealistic images (f) with
detailed caustics (shown and compared in the insets) from very sparse photons for scenes with complex diffuse-specular interactions. In
particular, we use our method with only 15k photons (∼0.06 photons per pixel) to compute accurate global illumination for light-specular
paths. We use path tracing (PT) with a moderate number (300) of samples per pixel (spp) to compute the other paths and apply the Optix
learning-based denoiser (based on [CKS∗17]) to remove the Monte Carlo (MC) noise. In contrast, pure PT leads to noisy results lacking
focused caustics (a) even with 1000 spp that is significantly more than our photon and path samples. While this noise can be mitigated using
a learning-based denoiser, this introduces artifacts and cannot recover the caustics (b). Combining PT and standard PM [Jen96] with 15k
photons, and then denoising (c), avoids these artifacts but still does not reconstruct caustics accurately from such low photon counts. While
providing 1.5M photons (this is 100 times the number of photons our method uses) and applying the advanced stochastic progressive PM
(SPPM) [HJJ10] enables a more accurate result (d), it is still slightly worse than ours. In contrast, our result (f) accurately reproduces the
caustic effects in the global illumination, as compared to the ground truth (g), with significantly fewer samples. Ours is comparable with (if
not better than) the result from adaptive progressive PM (APPM) [KD13] with 100 times the number of photons (e).

Abstract
Recently, deep learning-based denoising approaches have led to dramatic improvements in low sample-count Monte Carlo
rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects
like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced
photons to achieve high-quality reconstructions. In this paper, we develop the first deep learning-based method for particle-
based rendering, and specifically focus on photon density estimation, the core of all particle-based methods. We train a novel
deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes
individual photons into per-photon features, aggregates them in the neighborhood of a shading point to construct a photon
local context vector, and infers a kernel function from the per-photon and photon local context features. This network is easy
to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce
high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons
compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly
advancing the computational efficiency in photon mapping.

CCS Concepts
• Computing methodologies → Rendering;
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1. Introduction

Computing global illumination is crucial for photorealistic image
synthesis. Ray tracing-based methods have been widely used to
simulate complex light transport effects with global illumination
in film, animation, video game and other industrial fields. The most
successful approaches are based on either Monte Carlo (MC) in-
tegration, like path tracing [Kaj86, Vea97], or particle density esti-
mation, like photon mapping [Jen96]. Photon mapping techniques
are able to efficiently simulate caustics and other challenging light
transport effects, which are very hard and even impossible for pure
Monte Carlo-based methods to simulate.

In general, both MC-based and particle-based methods require
numerous samples to render noise-free images, and are thus com-
putationally expensive. Recently, significant progress has been
made in denoising MC images rendered with low sample counts us-
ing deep learning techniques [CKS∗17, BVM∗17]. However, there
is relatively little work in particle-based methods for low-sample
reconstruction and current photon mapping techniques still require
a very large number of traced photons to achieve accurate, artifact-
free radiance estimation.

We present the first deep learning-based approach for particle-
based rendering that enables efficient, high-quality global illumina-
tion with a small number of photons. Our approach is particularly
good at reconstructing diffuse-specular interactions like caustics,
for which previous photon mapping methods require large photon
sample counts (and path-tracing at reasonable sample counts can
miss altogether). We focus on photon density estimation—a key
component of all particle-based methods—and introduce a novel
deep neural network that can estimate accurate photon density at
any surface points in a scene given only sparsely distributed pho-
tons.

Previously, the most successful density estimation methods for
photon mapping are kernel-based methods that use traditional ker-
nel functions (like a uniform or cone kernel) to compute output
radiance at a surface point as a weighted sum of nearby photons.
While previous methods have improved the kernels by controlling
the kernel bandwidths or shapes [KD13,SSFO08,KWX∗16], tradi-
tional kernel functions still require a large enough count of photons
located in a small enough bandwidth around every surface shad-
ing point, for which a very large number of photons need to be
traced, to compute accurate photon density. In contrast, we pro-
pose to learn to predict a kernel function at each shading point to
effectively aggregate nearby photon contributions. Our predicted
kernels leverage data priors and are able to compute accurate pho-
ton density estimation for complex global illumination from photon
counts that are an order of magnitude fewer than traditional meth-
ods.

Our network considers local photons around a queried surface
point within a predefined bandwidth as input. Unlike traditional
methods that often treat photons individually or leverage standard
statistics to aggregate photons, we leverage learned local photon
statistics—encoded as a deep photon context vector inferred by the

* Equal contribution.

network—around a surface point for per photon kernel weight esti-
mates. Specifically, the network first processes individual photons
to extract per-photon features and aggregates them across photons
using pooling operations to obtain a deep photon context feature
that represents the local photon statistics. The network processes
the individual per-photon features concatenated with the local con-
text to compute per-photon kernel weights, which are used to per-
form density estimation by a weighted sum. We demonstrate that
this approach of learning kernel prediction is more efficient than a
baseline that directly estimates photon density from the aggregated
deep context vector.

To train our network, we create diverse photon distributions by
tracing photons in 500 procedurally generated scenes with complex
shapes and materials. We sample surface points on diffuse surfaces,
which form a 512×512 image (one pixel per point) in each scene,
and we compute the ground truth photon density of each point us-
ing progressive photon mapping [HOJ08] with billions of photons.
Note that, our network focuses on local photon distribution prop-
erties of surface points. Hence, every surface point in a scene is a
training datum, allowing us to train a generalizable network with-
out a lot of images.

In Fig. 1, we demonstrate that, using only 15k photons, our
method can synthesize high-quality images. Conversely, variations
of path tracing and photon mapping fail to do so; even when com-
bined with advanced progressive and adaptive techniques, SPPM
and APPM require significantly more samples (1.5M photons) to
achieve comparable results. This makes our approach an important
step towards making photon mapping computationally efficient.
Moreover, our experiments leverages an effective practical hybrid
approach: using our method for reconstructing light-specular (LS)
paths – the light transport paths that interact with specular surfaces
before arriving at light sources—and low sample-count path trac-
ing with learning-based denoising for all other light transport paths.
This leverages the advantages of both MC denoising and our effi-
cient photon density estimation technique.

2. Related Work

Monte Carlo path integration. Kajiya [Kaj86] introduced the
rendering equation and Monte Carlo (MC) path tracing. Since
then, various methods for MC path integration have been devel-
oped, including light tracing [DLW93], bidirectional path trac-
ing (BDPT) [LW93, VG95], and Metroplis light transport (MLT)
[Vea97,PKK00,CTE05]. These methods are able to simulate com-
plex light transport with accurate global illumination in an unbi-
ased way. However, pure MC based methods typically require a
very large number of samples (traced paths), especially for very
low probability paths like the classical caustic or specular-diffuse-
specular (SDS) paths. We base our method on the photon mapping
technique, which is efficient for caustics and SDS, and we aim to
achieve sparse reconstruction.

Monte Carlo denoising. While there is little progress in sparse
reconstruction with low sample counts in photon mapping, many
approaches have been proposed to achieve MC rendering with low
sample counts. A recent survey of sparse sampling and reconstruc-
tion is presented by Zwicker et al. [ZJL∗15]. MC denoising meth-
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ods can be categorized into a-priori methods that rely on prior theo-
retical knowledge [DHS∗05,ETH∗09,YMRD15,WYKR17], and a-
posteriori methods that filter out the noise in rendered images with
few assumptions about the image signal [ODR09,RMZ13,KBS15].

Recently, deep learning techniques have been introduced to
achieve MC denoising [CKS∗17, BVM∗17], and many methods
utilize kernel prediction [BVM∗17, VRM∗18, XZW∗19]. Kalan-
tari et al. [KBS15] propose to predict the parameters of fixed fil-
tering functions using fully-connected neural networks. Bako et
al. [BVM∗17] leverage deep convolution neural networks to pre-
dict kernels to linearly combine the original noisy radiances of
neighboring pixels. Gharbi et al. [GLA∗19] make use of individ-
ual screen-space path samples and predict a kernel for each sam-
ple that splats the radiance contributions to its neighboring pixels.
Deep learning techniques have also been extended to gradient do-
main rendering [KHL19]. In contrast, we apply deep learning in
photon density estimation and leverage local photon statistics for
density estimation from sparse photons. Our network considers in-
dividual scene-space photon samples around each shading point
and predicts a kernel to gather per-photon contributions. Our ap-
proach is the first that introduces deep learning in photon mapping
and demonstrates learning-based kernel prediction in this context.

Photon density estimation. The rendering equation [Kaj86,
ICG86] can be approximated by particle density estimation
[SWH∗95, Jen96, WHSG97]. Most particle-based methods are
based on the original photon mapping framework [Jen96]; it first
traces rays from light sources to distribute photons in a scene,
and then gathers neighboring photons at individual shading points
to approximate radiance estimates. Photon mapping achieves low
variance in the rendered images and leads to blurred, less notice-
able artifacts at the cost of introducing bias in the estimates. Photon
mapping is able to consistently converge to the correct solution by
increasing the number of photons towards infinity and reducing the
bandwidth towards zero.

Previous work has investigated progressive methods to overcome
the memory bottleneck and enable arbitrarily large photon num-
bers [HOJ08, HJ09, HJJ10, KZ11], bidirectional methods to im-
prove rendering glossy objects [Vor11], adaptive methods to opti-
mize photon tracing [HJ11], and the combination of unbiased MC
methods and photon mapping [GKS11, HPJ12, GKDS12]. Many
relevant works have been presented to improve the kernel den-
sity estimation by utilizing standard statistics for adaptive kernel
bandwidth [JC95, KD13, KWX∗16] or anisotropic kernel shapes
[SSFO08]. Other works leverage ray differentials [SFES07], blue
noise distribution [SJ09, SJ13a, SJ13b], traditional linear regres-
sion [HSR∗15] and Gaussian mixtures fitting [JRJ11] to improve
the reconstruction. In contrast, we focus on accurately computing
photon density with sparse photons, which hasn’t been explored in
previous work. Essentially, we replace the traditional kernel density
estimation with a novel deep learning based module, and keep the
rest unchanged in the standard photon mapping framework. This
potentially enables the combination of our technique and previous
photon mapping techniques that focus on other components in the
framework.

3. Background: Density estimation

Photon mapping techniques compute reflected radiance via density
estimation. Kernel density estimation [WJ94] is the most widely
used density estimation method in statistics, and has been widely
applied in photon mapping. Early works use the uniform kernel that
treats nearby photons equally [Jen96, HOJ08]; subsequent works
extend photon density estimation to support arbitrary smooth ker-
nels [HJJ10, KZ11]. In general, the reflected radiance at a shading
location xxx is computed by:

L(xxx,ωωω)≈ 1
N

N

∑
i=1

kr(xxx,xxxi)τi, (1)

where N is the total number of photon paths that are emitted in a
scene, ωωω is the reflected direction, xxxi is the location of a photon, τi
is the photon contribution and kr represents the kernel function with
bandwidth r. In general, the photon contribution τi is the product
of the BRDF and the photon energy. In this work, we only com-
pute photon density on diffuse surfaces, as is done in many classi-
cal photon mapping methods. In this case, the BRDF at a shading
point is ρ/π, where ρ is the albedo. Correspondingly, τi = φρ/π,
where φ represents the accumulated path contribution divided by
the sampling probability, which can be also interpreted as the en-
ergy flux carried by the photon. Therefore, ωωω can be removed and ρ

can be taken out of the summation in Eqn. 1. We therefore consider
the photon energy φ as the photon contribution in this work.

The kernel kr assigns linear weights to photons, which are used
to linearly combine the contributions of photons in a local window
with radius r. Traditionally, kr is a uniform function (1/(πr2)) or a
function of the distance from the shading point to a photon (‖xxx−
xxxi‖). Instead, we propose to leverage data priors to predict kernels
to aggregate photon contributions.

4. Learning to compute photon density

In this section, we present our learning-based approach for pho-
ton density estimation. Our approach is light-weight and focuses
on density estimation only; we keep the main framework of stan-
dard photon mapping and upgrade the traditional, distance-based
and photon-independent kernel functions (kr in Eqn. 1) to novel,
learned and local-context-aware kernel functions represented by a
deep neural network (see Fig. 2).

In particular, given a shading point, our network considers its
K nearest neighbor photons, which adaptively selects the band-
width r. Multiple properties of individual photons are used as input
for the network, including photon positions {xxxi}K

i=1, photon direc-
tions {dddi}K

i=1 and photon contributions {φi}K
i=1. We also supply the

number of nearest photons K to the network to let it better under-
stand the local photon distribution. Our network (denoted as Φ)
regresses per-photon kernel weights to compute radiance estimates
via a weighted sum similar to Eqn. 1:

L(xxx)≈ ρ

Nπr2

K

∑
i=1

Φr,i(xxx,{xxxi},{dddi},{φi})φi, (2)

where Φr,i represents the predicted kernel weight for photon i. Note
that, our network uses information about all photons in a local
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Figure 2: Overview of our deep photon density estimation network. Given a set of photons within the bandwidth of a shading point, we pre-
process these photons’ properties and input them to feature extractor MLPs that compute per-photon features. These are aggregated using
max- and average-pooling to construct a deep context feature. The original per-photon features and the deep context are concatenated and
processed by a kernel prediction MLP that predicts a kernel weight. Finally, these kernel weights are used to sum the photon contributions
and produce the reflected radiance.

neighborhood for per-photon kernel prediction; it obtains deep pho-
ton statistics and associates per-photon information with statistical
context to compute kernels for photon aggregation.

4.1. Input pre-processing

Photon distributions are highly diverse across shading points and
across scenes, making it challenging to design a network that gen-
eralizes across different inputs. Besides, deep neural networks are
known to benefit from normalized input data to correlate values
from different domains. Therefore, we pre-process the input pho-
ton properties to allow for better generalizability and performance.

Since light intensities can have very high dynamic range (HDR),
the photon contributions τi can vary widely in range, which is
highly challenging for a network to process. We introduce a map-
ping function to pre-process the photon contributions,

ta(u) =
log(u+a)− log(a)

log(u+a)− log(a)+1
, (3)

where a = 0.01 is an additional parameter. Essentially, ta(u) maps
HDR values u from [0,∞] to [0,1]. We further linearly map these
values to [−1,1] and provide them as network input. We observe
that such a mapping process facilitates the network learning.

For photon positions xxxi and directions dddi, we first transform them
into the local coordinate frame of the shading point; the coordinate
frame is constructed using the position and normal of the shading
point and two orthogonal directions that are randomly selected in
the tangent plane. This transforms the network inputs into a consis-
tent coordinate system and improves generalizability.

The bandwidth r of our learned kernel is determined by the
distance of the Kth nearest photon. This leads to a large range
of bandwidth values given various photon distributions, which is
highly challenging for a deep neural network to process. Moti-
vated by the bandwidth normalization used in traditional kernels
[WJ94, SWH∗95], we divide the photon positions in the local co-
ordinates by the bandwidth r, and scale the final density estimates

by 1/r2, which is shown in Eqn. 2. This normalizes all input pho-
ton positions into a unit sphere and post-scales the computed pho-
ton density by the actual window area. As a result, our network is
invariant to the actual bandwidths, and effectively generalizes to
different photon distributions and supports different numbers of to-
tal emitted photons that will introduce different bandwidths for the
same K.

Note that, different terms of our network input are all normalized
into the range of [−1,1], which enables our network to correlate
and leverage different photon properties from various domains in
an efficient way. Our input pre-processing also makes our network
translation-, rotation-, and scale- invariant to diverse photon distri-
butions, leading to good generalization across different scenes and
different numbers of emitted photons.

4.2. Network architecture

The inputs to our network are essentially a set of multi-feature 3D
points in a unit sphere. In the set, there is no meaningful inherent
point ordering and the number of points (K) is not fixed. We thus
leverage PointNet [QSMG17] style neural networks with multi-
layer perceptrons, which accept an arbitrary number of inputs and
are invariant to permutations of inputs. As shown in Fig. 2, our net-
work consists of two sub-networks, a feature extractor and a kernel
predictor; they are both fully connected neural networks and pro-
cess each photon individually.

The feature extractor first processes each individual photon; it
considers the pre-processed photon properties (9 channels includ-
ing positions, directions and contributions) as input, and extracts
meaningful features using multilayer perceptrons. Specifically, we
use three fully connected layers in the feature extractor, and each
layer is followed by a ReLu activation layer. The feature extractor
leverages linear and non-linear operations to transform the original
input into a learned 32-channel feature vector. These per-photon
features are then aggregated across photons by max-pooling and
average-pooling operations which output the deep photon context
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vector. This vector represents the local photon statistics in a learned
non-linearly transformed space. The kernel predictor then lever-
ages the across-photon context and the per-photon features to pre-
dict a single scalar that represents the kernel weight for each pho-
ton. These per-photon kernel weights are the final output of our
network and will be used to linearly combine the original photon
contributions as expressed in Eqn. 2. The kernel predictor is also a
three-layer fully connected neural network with ReLU as activation
layers, which is similar to the feature extractor but with different
channels at each layer.

Note that, unlike previous work that treats each photon indepen-
dently, we propose to correlate per-photon information with local
context information across photons. Our feature extractor trans-
forms photon properties into learned feature vectors, which allows
for collecting photon statistics in the learned neural feature space
to obtain the photon context for the following kernel prediction.
Our whole network is very light-weight, and involves only six fully
connected layers; this ensures a highly efficient inference process.
We show that such a light-weight network is able to effectively re-
construct accurate photon density from sparse photons.

4.3. Training details

Data generation. Monte Carlo denoising usually requires a large
number of images to train and is hard to generalize across different
type of scenes. Our method focuses on local photon distributions;
in other words, to learn proper data priors, we desire the diversity of
photon distributions in terms of individual shading points and not
necessarily of the entire scenes. This allows for good generalizabil-
ity of our network with a relatively small number of training scenes,
which can even be very different from our final testing scenes. In-
spired by [XSHR18,XBS∗19], we procedurally create shapes from
primitives with random sizes and random bump maps; a set (ran-
domly from 1 to 16) of such shapes are then placed in a box and
distributed roughly as a grid. We also place multiple area lights with
random locations and rotations in the scene, and randomly assign
specular materials and diffuse materials to the scene objects.

Figure 3: Examples of our procedurally generated training scenes.

A few examples of these scenes are shown in Fig 3; complex
light transport effects with diverse photon distributions are simu-
lated. To sample shading points in each scene, we shoot rays from a
camera through an image plane with 512×512 pixels and select the
first diffuse intersections as target shading points. We trace photons
from light sources and keep the ones that contribute to the indirect
lighting. Progressive photon mapping [HOJ08] is then applied to
compute ground truth photon densities for each point with a total
number of about 1 billion photon paths. For each scene, we store

10 million photon paths and a 512×512 multi-channel image that
contains the ground truth radiances and other necessary informa-
tion (positions, normals and BRDFs) of shading points. We create
500 scenes for training our neural networks and test our network
on scenes that are significantly different from our training data (see
Fig. 1 and Fig. 8).

Loss function. We supervise our network with the ground truth ra-
diance estimates. The final radiances are in high dynamic range,
which can easily make the training dominated by high-intensity
values; we therefore tone-map the radiance estimates using the µ-
law as in [KR17]. The mapping function pµ(v) is given by:

pµ(v) =
log(1+µv)
log(1+µ)

, (4)

and we set µ = 5000 following [KR17]. We tone-map both our esti-
mated radiance and the ground truth radiance, and we apply L2 loss
on the mapped values.

Training parameters. We randomly select K from 100 to 800 and
use from 0.3 million to 4 million photons to train our network,
which makes it generalize well to various bandwidths and photon
counts. We use Adam to train our network for 6000 epochs with
an initial learning rate of 10−4 and a batch size of 2000 random
shading points.

5. Experiments

We now present a comprehensive evaluation of our method.

Ablation study. We first justify the choices of our network design.
In particular, we compare our network with a baseline network that
estimates the final radiance without predicting kernels; this com-
parison network has a similar network architecure but directly out-
puts the final irradiance from the across-photon deep context vector.
Figure 4 shows the training processes of these networks; our net-
work converges significantly faster than the baseline method. This
demonstrates the effectiveness of combining kernel density estima-
tion and deep learning and is consistent with previous results on
denoising for path tracing [BVM∗17, VRM∗18, GLA∗19].

Evaluation scenes and photon generation. We evaluate our
method on six challenging scenes (GLASS EGG, RED WINE,
RINGS, WATER POOL1, WATER POOL2, DRAGON) that involve
complex caustics and other diffuse-specular interactions with LS
paths. In theory, LS paths can never be reconstructed by path trac-
ing if we use a point light source; we therefore use area lights in
the scenes to allow for reasonable comparisons with PT. For each
scene, we shoot photons for 0.1 second, which generates about
0.8M photon paths with at maximum five photons per path; we only
keep those photons that involve light-specular paths in the scenes.
We denote the number of valid photons we consider as M, which
is a number that is different from the total emitted photon paths
N in Eqn. 1. Because of various compositions of scenes, there are
15k (GLASS EGG), 85k (RED WINE), 77k (RINGS), 50k (WATER

POOL1), 100k (WATER POOL1) and 125k (WATER POOL1) valid
photons that are used in the six scenes respectively. We also eval-
uate with the number of photons that are traced in one second—
corresponding to ten times the number of photons traced in 0.1
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seconds—to justify the generalization of our network to different
numbers of emitted photons, and compare with the other methods
with photons that are traced in ten seconds to justify the quality of
our sparse reconstruction.

Combining MC denoising and deep photon mapping. We eval-
uate our deep photon density estimation by combining our method
with MC denoising. Specifically, we apply our learning-based den-
sity estimation to only compute the challenging light transport ef-
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Figure 6: We show our final results in full images (a). Our final re-
sults are computed by combining our deep photon mapping results
and path tracing with denoising. We compare against pure path
tracing using 1000 spp with (c) and without(d) denoising on insets.
Obviously, path tracing alone even with 1000 spp cannot handle
the LS paths.

fects which involve LS paths that are extremely hard to trace in PT
and likely to introduce caustics. In addition, we use path tracing
with relatively low sample counts to compute the remaining light
transport paths, and use modern learning-based denoising—the Op-
tix built-in denoiser based on [CKS∗17]—to remove the MC noise.

By removing LS paths in PT, we also make PT and MC denois-
ing much easier. As shown in Fig. 5, PT without LS paths can be
effectively denoised using modern learning-based denoising tech-
niques with 100 spp, whereas full PT with LS paths introduces ex-
tensive noise with the same 100 spp, causing denoising to fail com-
pletely. In fact, the standard PT plus denoising pipeline is not able
to recover the complex light transport effects with even 1000 spp
(see Figs. 1,6). In contrast, we demonstrate a practical way of com-
bining our efficient deep photon mapping with MC denoising for
photorealistic image synthesis, in which we leverage the benefits
of low-sample reconstruction in both scene-space particle density
estimation and screen-space MC integration.

Parameters of our network and comparison methods. We ob-
serve that it is very hard for a single network to generalize across
different numbers of input photons (K). We thus use a fixed K when
training per network, and specifically we train two networks with
K = 50 and K = 500 for the evaluation. We also compare with
a variant of our network that has four times the channels at each
layer in our network architecture to evaluate if larger network ca-
pacity leads to higher performance. This large network generally
leads to better performance (see Tab. 1), but it requires about three
times longer inference time (see Tab. 2); please see the following
parts in the section for more discussion about quality and perfor-
mance. In the experiments, we use DPM (deep photon mapping) to
denote the network with regular capacity and DPM-L (or Ours-L)
to denote the one with larger capacity.

In all experiments, we compare with the classical photon map-
ping (PM) with the same k-NN photons as inputs. We also compare
with various progressive methods that are designed to progressively
reduce the bandwidth with large photon counts. In particular, for
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Scene (M) Ours-50 Ours-L-50 PM-50 Ours-500 Ours-L-500 PM-500 PPM APPM

GLASS EGG

(15k) 0.013 0.006 0.085 0.013 0.006 0.165 0.085 0.080
(150k) 0.012 0.006 0.036 0.008 0.004 0.079 0.065 0.043
(1.5M) 0.013 0.007 0.031 0.006 0.003 0.027 0.030 0.030

RED WINE

(85k) 0.052 0.028 0.116 0.044 0.021 0.222 0.134 0.111
(850k) 0.035 0.027 0.053 0.023 0.014 0.102 0.064 0.047
(8.5M) 0.032 0.030 0.045 0.014 0.011 0.037 0.031 0.026

RINGS

(77k) 0.042 0.023 0.069 0.023 0.008 0.153 0.137 0.143
(770k) 0.041 0.024 0.046 0.011 0.006 0.042 0.050 0.049
(7.7M) 0.045 0.020 0.066 0.012 0.009 0.023 0.017 0.014

WATER POOL1
(50k) 0.244 0.174 0.281 0.214 0.146 0.323 0.327 0.277
(500k) 0.214 0.173 0.221 0.135 0.115 0.244 0.249 0.193
(5.0M) 0.237 0.186 0.259 0.107 0.105 0.124 0.206 0.125

WATER POOL2
(102k) 0.178 0.125 0.226 0.167 0.095 0.260 0.262 0.224
(1.0M) 0.132 0.121 0.147 0.115 0.080 0.221 0.211 0.155
(10.2M) 0.134 0.128 0.159 0.066 0.061 0.102 0.163 0.088

DRAGON

(125k) 0.066 0.054 0.073 0.052 0.043 0.089 0.126 0.102
(1.2M) 0.056 0.054 0.061 0.034 0.033 0.044 0.083 0.054
(12.5M) 0.059 0.059 0.078 0.028 0.027 0.031 0.059 0.035

Table 1: Quantitative RMSE evaluation. We test our networks trained with different K (K = 50 and 500, denoted with Ours-K) on six novel
scenes with different numbers of valid photons (M). We also test a variant of our network architecture with enlarged four times capacity
(Ours-Large) using the same K. We compare RMSE against standard photon mapping (PM) [Jen96] under the same conditions, and also
progressive PM (PPM) [HOJ08] and adaptive PPM (APPM) [KD13]. We highlight the best and the second best results in red and blue for
each row; note that, all of them are our results. We also highlight the best result of the comparison methods in yellow, which is often worse
than any of our network settings.

Photon tracing Photon gathering Number of photons DPM-50 DPM-L-50 DPM-500 DPM-L-500
0.1s 0.12s∼ 0.5s 15k∼ 125k 0.3s 1.0s 3.0s 10.0s
1.0s 1.2s∼ 5.0s 150k∼ 1.2M 0.3s 1.0s 3.0s 10.0s
10.0s 12s∼ 50s 1.5M∼ 12M 0.3s 1.0s 3.0s 10.0s

Table 2: Timing. We show the corresponding running time in seconds for each photon mapping component. Our experiments are run with
photons that are traced within 0.1s, 1.0s and 10.0s in each scene. We list the corresponding gathering time to find the neighboring photons
for about 512× 512 surface shading points. The numbers of total photons are also shown, corresponding to the M in Tab. 1. We list the
network inference time for 512×512 surface shading points for our regular network (DPM) and a large network (DPM-L) with K = 50 and
500. Note that, the network inference time is determined by its capacity and K, and is independent of the number of total photons in the scene.

density estimation at fixed surface points, we compare with pro-
gressive photon mapping (PPM) [HOJ08]. Given a certain number
of input photons, the quality of PPM is influenced by the initial ra-
dius and the number of photons per iteration. To make a fair com-
parison, we compare 30 different variants (10 radii and 3 photon
counts per iteration) of the two parameters and choose the best set-
tings (with lowest RMSEs) for each scene. We also compare with
adaptive progressive photon mapping [KD13] similarly using the
best radius and number of photons per iteration from 30 different
variants of parameters. For visual comparisons, we compare with
stochastic PPM (SPPM) [HJ09], when there are transparent sur-
faces in a scene which require sampling multiple surface points per
pixel.

Quantitative and qualitative evaluation. We now evaluate our
method quantitatively and qualitatively with different numbers of
photons counts (M) and different variations of training parameters

(input photon number K and capacity). Table 1 shows quantita-
tive RMSE evaluation of photon density estimation on the six test-
ing scenes; the numbers are averaged across about 260k surface
shading points sampled by tracing rays from a camera and select-
ing the first diffuse hit points in the scenes. Note that, across all
these different scenes with different photon counts, our method
with K = 500 performs consistently better than all the compari-
son PM methods, including standard PM [Jen96], PPM [HOJ08]
and APPM [KD13], with the same number of total photons. Most
of our results are better than PM’s and PPM’s results with ten times
the photon counts as ours. APPM leverages traditional statistical
information of local photons to improve the density estimation of
PPM, which is able to achieve fairly good results; however, it re-
quires the number of photons to be large enough to obtain good
statistics. In contrast, our method leverages learned statistics in the
network, which achieves significantly better results than APPM
with the same number of photons; ours is actually comparable to
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Figure 7: We show results of our method with different numbers of input photons (K). We compare against PM, SPPM and APPM with the
same number of total photons (M) on insets marked in the left-top ground truth image. We also show the results of APPM and PPM with ten
times the largest number of photons our method uses (j, k). The PSNRs and SSIMs of the insets are shown correspondingly.

Mean DSSIM
Ours-50 Ours-Large-50 PM-50 Ours-500 Ours-Large-500 PM-500
0.0346 0.0342 0.0337 0.0281 0.0277 0.0260

Table 3: Temporal stability. We show the mean DSSIM between pairs of adjacent frames over a sequence of 30 rendered frames. Results have
been averaged over all the different scenes and amount of photons.

the APPM that uses ten times the total number of photons. Note
that, the APPM and PPM results are selected from the results of
tens of APPM and PPM variants with different hyper-parameters
for their best performance; yet, our method still outperforms the
best of these variants.

To visually illustrate the numbers in Tab. 1, we demonstrate all
the rendering results of RINGS and RED WINE with the first two
rows (first two M) in Fig. 7; we also show the visual results of
APPM and PPM with larger M in Fig. 7.j, k. Additionally, we show
results of three testing scenes in Fig. 8, where we compare our our
DPM-500 with PM and SPPM. In Fig. 1, we show the result of our
DPM-50 and compare with PT, PM, SPPM and APPM. In general,
our method with K = 500 outperforms the comparison methods
with the same number of photons qualitatively and quantitatively.
And our results are comparable to (if not better than) the com-
parison methods that use ten times the number of photons in the
scene. While the larger network with K = 500 (Ours-L-500) per-
forms better than the regular network, the larger one also requires
longer inference time (see Tab. 2). Therefore, our regular network
with K = 500 is generally the best choice for most cases, which

stably achieves high-quality results. However, when timing is not
a critical issue, the large network will be a better choice for higher
accuracy.

In most cases, the Ours-500 (K = 500) results are better than the
Ours-50 (K = 50) ones, indicating that our network is usually in
favor of more nearest neighbor photons (K) as input. Essentially,
a larger K allows for better local deep statistics in the deep con-
text feature, which enables better kernel predictions. Note that, this
is not the case for standard PM using the same nearest neighbor
strategy for bandwidth selection. Photon mapping either introduces
obvious non-smooth artifacts with a small bandwidth (Fig. 7.i) or
outputs over-smooth results without details with a large bandwidth
(Fig. 7.d). APPM tends to resolve this issue by wisely reducing
the bandwidth according to the photon statistics. In contrast, our
method achieves significantly better results than APPM when there
are only sparsely distributed photons. Our method is able to lever-
age a relatively large bandwidth without introducing any obvious
over-smoothing issues. This is thanks to our learning based context-
aware kernel prediction approach. In particular, our approach al-
lows for every single photon to leverage across-photon information
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Figure 8: We show our results on full images (a). We compare against PM with the same input photons (d) and SPPM with the same (f) and
ten times (g) the total photon counts on insets. PSNRs and SSIMs are also calculated for all insets and listed below.

in the learned deep context feature to tell if it is an outlier or an
important contributing element to the shading point’s reflected ra-
diance; a corresponding kernel weight is assigned to each photon
based on the decision made by data priors in the network. There-
fore, our method is able to effectively utilize the sparse photons
in a large area to generate photorealistic images that are of high
smoothness and have many details.

Timing. We use Optix to trace photons and do path tracing for all
the results. All experiments are run on one NVIDIA 1080 Ti GPU.
Path tracing runs at about 50 spp per second in all six scenes with
an image resolution of 512×512. It takes about 0.1, 1.0 and 10 sec-
onds to emit photons. We show the corresponding photon gather-
ing time and network inference time for 512×512 surface shading
points in Tab. 2. In particular, we build Kd-Trees to do the neigh-
boring search at each shading point and all methods take similar
time to gather neighboring photons. Note that the running time of
our network is linear with the number of input photons K; it is also
determined by the number of shading points that are required to
be computed, and the listed timing corresponds to 512×512 shad-
ing points. The total running time for our method is the summation
of the photon tracing, gathering and the network inference time;
the total running time for the other methods is the summation of
tracing and gathering. Note that, across all the experiments (Tab. 1,
Fig. 7, Fig. 8), our results of DPM-500 with photons traced in 1 sec-
ond are comparable to the best results of comparison methods with
photons traced in 10 seconds; however, to achieve the compara-
ble results, our DPM-500 takes about 5.2s∼ 9s total time, whereas
the comparison methods require 22s∼ 60.0s total time to compute
the same number of shading points. Our method takes significantly
shorter time to achieve the comparable quality.

Network capacity and K. While our network is mainly trained
with relatively sparse photons (small M), our network with K=500
overall generalizes well across different numbers of total photons
(M) and, in most cases, achieves better performance when M in-
creases. However, for K=50, there is too little information for the
network to leverage and higher performance is often not ensured
with a larger M. Nonetheless, our network with K=50 still works
well and performs better than the comparison methods when there
are tens of thousands of photons. We also observe that a larger
network (Ours-L) with larger capacity leads to clearly better re-
sults than our regular network. Of course, a larger network re-
quires higher computational cost or longer inference time as shown
in Tab. 2. Yet, the larger network with K = 50 can already often
achieve reasonably good results, which takes shorter running time
than K = 500. We leave the exploration of more variants of the
network capacity and K as future work.

Temporal consistency. Since our method deals with shading points
in 3D space and is independent of view directions, we have ob-
served that it has good across-frame consistency when changing the
view in a scene with a fixed set of photons. We follow [VRM∗18]
and use the mean DSSIM between consecutive frames to evaluate
the temporal consistency when moving the camera. Results in Ta-
ble 3 show comparable temporal stability between our results and
standard PM outputs. We leave the extensions of our network to re-
current architectures and general temporal consistency with other
dynamic components in a scene as future work.

Progressive density estimation. Our current framework requires a
fixed number of input photons for each trained network. Progres-
sive photon mapping accepts different numbers of photons per iter-
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ation with reduced bandwidth. Nonetheless, we have demonstrated
that our network architecture supports accurate photon density es-
timation with various fixed photon numbers. In other words, a pro-
gressive method can potentially be achieved by training a sequence
of networks with different numbers of inputs. A universal network
for any given number of input photons may require introducing re-
current networks in the framework, which is an interesting direction
of future work.

6. Conclusions and Future Work

In this paper, we have presented the first deep learning-based
method for density estimation in particle-based rendering. We in-
troduce a deep neural network that learns a kernel function to ag-
gregate photons at each shading point and renders accurate caustics
with significantly fewer photons than previous approaches, with
minimal overhead. Learning-based MC denoising has significantly
improved path tracing results and our work extends these benefits
to the popular photon mapping method.

Our method could be improved in the future with more advanced
machine learning approaches, perhaps based on generative adver-
sarial networks (GANs), just as has been done with path tracing
[XZW∗19]. More broadly, we believe this paper points towards de-
noisers specialized to many other approaches for realistic image
synthesis such as Metropolis Light Transport and Vertex Connec-
tion and Merging.
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