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Fig. 1. We present a new framework for connecting measured and analytic BRDFs. In our method, (a) we first develop a robust diffuse specular separation
algorithm on measured BRDFs. This separation equips measured BRDFs with the flexibility and compactness of analytic models: (b) we are allowed to edit the
diffuse and specular parts of the measured BRDFs separately, and (c) the measured BRDF can be expressed using only 8 parameters, which is the same number
as for commonly used analytic BRDFs, such as the GGX model. (d) We further develop a robust and efficient algorithm to directly fit complex data-driven
reflectances to two-lobe analytic materials, and our results outperform the traditional non-convex optimization in accuracy, speed, and stability.

The bidirectional reflectance distribution function (BRDF) is crucial for
modeling the appearance of real-world materials. In production rendering,
analytic BRDF models are often used to approximate the surface appearance
since they are compact and flexible. Measured BRDFs usually have a more
realistic appearance, but consume much more storage and are hard to modify.
In this paper, we propose a novel framework for connecting measured
and analytic BRDFs. First, we develop a robust method for separating a
measured BRDF into diffuse and specular components. This is commonly
done in analytic models, but has been difficult previously to do explicitly for
measured BRDFs. This diffuse-specular separation allows novel measured
BRDF editing on the diffuse and specular parts separately. In addition, we
conduct analysis on each part of the measured BRDF, and demonstrate a
more intuitive and lower-dimensional PCA model than Nielsen et al. [2015].
In fact, our measured BRDF model has the same number of parameters (8
parameters) as the commonly used analytic models, such as the GGX model.
Finally, we visualize the analytic and measured BRDFs in the same space,
and directly demonstrate their similarities and differences. We also design
an analytic fitting algorithm for two-lobe materials, which is more robust,
efficient and simple, compared to previous non-convex optimization-based
analytic fitting methods.
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1 INTRODUCTION
The wide variety of real-world surface appearances are usually
represented by the bidirectional reflectance distribution function
(BRDF) [Nicodemus et al. 1977] in computer graphics. The BRDF,
which describes how much light from an incoming direction is
reflected to an outgoing direction, is a 4D function and can be re-
duced to 3D by assuming the material to be isotropic. Analytic BRDF
models, which approximate the surface reflectance with a few pa-
rameters, are flexible, and are often used in production. On the other
hand, measured BRDFs, such as the MERL dataset [Matusik et al.
2003a], are by definition more accurate, but can involve significant
complexity of measurement and storage, and can be difficult to edit
or manipulate. To address these challenges, in this paper we equip
the measured BRDFs with multiple properties of analytic BRDFs,
explore the relation between analytic and measured BRDFs, and
develop a robust and efficient way to fit analytic BRDFs to measured
ones. Specifically, we make the following contributions:

Diffuse-Specular Separation. In Sec. 3, we introduce a novel 3-
step optimization algorithm (Figs. 1a and 2) to separate a measured
BRDF into a diffuse and a specular part, each with a color. While
this separation has been trivial for analytic BRDFs, it has been
very difficult previously for measured data. The separation gives

ACM Transactions on Graphics, Vol. 37, No. 6, Article 273. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275026
https://doi.org/10.1145/3272127.3275026


273:2 • Tiancheng Sun, Henrik Wann Jensen, and Ravi Ramamoorthi

measured BRDFs the form of analytic models, which makes the
measured BRDFs more flexible and compact. We demonstrate three
applications of this separation in Secs. 4-6.

Measured BRDF Editing. In Sec. 4, we demonstrate several ed-
its on measured BRDFs which benefit from separating the diffuse
and specular parts. These edits (Figs. 1b and 9) are straightforward
on analytic BRDF models, but have previously not been easy to
accomplish for measured BRDF models.

Compact Measured BRDF Model. In Sec. 5, we conduct princi-
pal component analyses on the separation results of BRDFs in the
MERL dataset, and show that we can efficiently represent the diffuse
part with 1 principal component in linear space, and the specular
part with 3 principal components in logarithm space (Fig. 1c). This
is more compact than the 5-dimensional subspace introduced by
Nielsen et al. [2015], which had the diffuse and specular parts mixed
together in the principal components. More important, this is the
first method to express measured BRDFs with the same number of
parameters (8 parameters: 1 for diffuse, 3 for specular, and each part
has 2 more for hue and saturation) as popular analytic models such
as Lambertian plus GGX model [Walter et al. 2007].

Relating and Fitting to Analytic BRDFs. In Sec. 6, we investigate
the relations between the specular part of measured BRDFs and
the GGX model. We visualize the analytic and measured BRDFs
in the same low-dimensional principal component space (Fig. 17),
and show that the analytic BRDFs lie in a manifold in this space.
We then develop an algorithm for fitting complex measured BRDFs
to two-lobe analytic BRDFs. Compared to traditional non-convex
optimization methods, our algorithm can yield a more accurate
result in a much more robust and efficient way (Fig. 1d).

2 RELATED WORK
Analytic BRDF Models. Analytic BRDF models usually consist of

a diffuse and a specular model, each with a color. The Lambertian
model is widely used as the diffuse model, and there also exists a
more precise model [Oren and Nayar 1995]. The specular behav-
ior of the materials is much more complicated. Early models were
mainly derived emprically [Phong 1975; Blinn 1977; Lafortune et al.
1997]. More recently, physically-based microfacet models were intro-
duced [Cook and Torrance 1982; Ward 1992; Ashikmin et al. 2000].
Among these, the GGX model is currently widely used in produc-
tion [Walter et al. 2007]. In our paper, we based our analysis on the
Lambertian and GGX models.

Data-driven BRDFs. BRDF measurements from real-world mate-
rials are needed to validate analytic models. Matusik et al. [2003a]
constructed the first large-scale BRDF dataset, the MERL dataset,
which contains 100 real-world materials covering a wide range of
appearances. Each material consists of measurements from a dense
set of directions. This dataset led to better understanding of real-
istic materials [McAuley et al. 2012; Zubiaga et al. 2015; Havran
and Sbert 2015], and inspired researchers to formulate more pre-
cise analytic models to match the measurements [Löw et al. 2012;
Bagher et al. 2012; Brady et al. 2014; Bagher et al. 2016]. By consid-
ering diffraction and the error introduced by acquisition apparatus,
Holzschuch et al. [2017] provided a very good approximation to
measured BRDFs. There also exist other measured BRDF datasets

such as UTIA [Filip and Vávra 2014]. However, the BRDFs in the
UTIA dataset are mostly anisotropic and are sparsely sampled. For
a comprehensive review on BRDF representation, please see the sur-
vey [Guarnera et al. 2016]. In our paper, we focus only on isotropic
BRDFs in the MERL dataset. Rather than propose a more accurate
model for the BRDF, we compress the measured BRDFs to the size of
the analytic ones. We then reveal the relation between the analytic
and measured BRDFs with this compact representation, and analyze
the similarity and differences between them.

BRDF Decomposition. Several BRDF decomposition methods have
been proposed to simplify the structure of measured BRDFs, includ-
ing non-negative matrix factorization [Lawrence et al. 2004, 2006],
gaussian mixture [Sun et al. 2007], and tensor decomposition [Bilgili
et al. 2011]. These methods implicitly did a diffuse-specular sepa-
ration, but their assumption on each part is usually handcrafted
and does not always hold. Soler et al. [2018] proposed to embed the
measured BRDFs in a compact manifold. While the representation
has only two dimensions, their model has little physical meaning.
In this paper, we infer the concept of diffuse and specular from ana-
lytic models. Recently, Nielsen et al. [2015] expressed a measured
BRDF with 5 principal components after a log-relative mapping.
This method further compressed the size of the measured BRDF, but
the color and different types of reflectances are all mixed together in
the principal components. In our paper, we first separate the colors
and the reflectances with a diffuse-specular separation, then do a
similar log-relative mapping and principal component analysis only
on our specular parts. By doing this, we obtain a more compact
measured BRDF model than the model from Nielsen et al.

BRDF Fitting. BRDF fitting has been an open problem for decades.
Ngan et al. [2005] first did the fitting on the MERL dataset using
the weighted L2 metric, and later there was more study on the
choice of a good BRDF metric [Fores et al. 2012; Löw et al. 2012;
Bagher et al. 2012; Brady et al. 2014; Bagher et al. 2016]. However,
all these methods suffer from the local minima of non-convex op-
timization. Dupuy et al. [2015] proposed an iterative method to
extract the microfacet parameters from anisotropic materials, but
only backscattering samples are used. In this paper, we propose a
fitting algorithm that does an efficient search on the whole analytic
gamut. The algorithm can produce accurate reconstruction results
in a more robust and efficient way with no extra parameters.

3 DIFFUSE-SPECULAR SEPARATION
A measured BRDF accurately models the appearance of a real-world
material, but its huge data size and high complexity have hindered
practical adoption. In order to enhance their flexibility and com-
pactness, we propose to separate measured BRDFs into diffuse and
specular parts, each with a single color:

ρ (ωi,ωo, λ) ≈ ρd (ωi,ωo) · cd (λ) + ρs (ωi,ωo) · cs (λ). (1)

The original measured BRDF ρ is a function of incoming and out-
going light directions ωi,ωo with wavelength λ. ρd, ρs are both
single-channel reflectances, and cd, cs are RGB colors normalized to
have the average value 1. This separation has decoupled colors and
reflectances, as well as diffuse and specular parts, which enables
simple editing on measured BRDFs (Sec. 4), a more compact mea-
sured BRDF model (Sec. 5), and more straightforward relation to
analytic models (Sec. 6).
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Fig. 2. An overview of our diffuse-specular separation algorithm using 3-
step optimization. We first fit an analytic BRDF to the achromatic reflectance
(average reflectance across color channels) of the target measured BRDF.
Then, we use the analytic BRDF as guidance to separate the diffuse and
specular parts of the measured BRDF. Finally, we restore the colors for each
part. Note that since we render the BRDFs under a full environment map,
the images may have some color even though the BRDFs are achromatic in
steps 1 and 2.

3.1 Separation Algorithm
The goal of the algorithm is to solve for the diffuse and specular
measured BRDFs ρd, ρs as well as the corresponding colors cd, cs
in Equ. 1. This is a highly nontrivial task: First, there don’t exist
strict definitions for diffuse and specular. In addition, the large
variation of BRDF values makes the separation even harder. Given
these challenges, we propose a 3-step optimization algorithm using
analytic BRDFs as guidance for the separation. As shown in Fig. 2,
we first approximate the achromatic shape of a measured BRDF with
analytic models, and then in the second step we refine the result of
the first step in order to exactly fit the target measured BRDF. At
last, we restore the colors for both diffuse and specular parts of the
measured BRDF.

We test our algorithm using the measured BRDFs from the MERL
dataset [Matusik et al. 2003a]. This dataset contains 100 isotropic
BRDFs captured from real worldmaterials. Each BRDF is represented
byp = (180×90×90)measurements under Rusinkiewicz coordinates
(ϕd,θh,θd) [Rusinkiewicz 1998]. For the analytic model, used as the
initial approximation, we use the Lambertian model for diffuse and
the GGX [Walter et al. 2007] model for specular. The expression for
the specular GGX model we use is as follows:

ρ = ρ0 ·
F (ω i ·h ) ·D (n·h ) ·G (n·ω i )G (n·ωo )

4(n·ω i ) ·(n·ωo )

F (x ) = 1
2
( д−x
д+x

)2 (
1 +

(
x (д+x )−1
x (д−x )+1

)2)
,д =

√
n2 − 1 + x2

D (x ) = m2

π [x 2 (m2−1)+1]2
, G (x ) = 2

1+
√
1+m2 · 1−x

2
x2

,

(2)

where h is the half angle vector ofωi andωo. ρ0,m, and n are the
intensity, roughness, and index of refraction (IOR) of the analytic
BRDF.
In this section, we express both measured BRDFs ρ and ana-

lytic BRDFs ρ (α ) in the sampled form of the MERL dataset, where
α represents the analytic parameters. Mathematically, we have

ρ, ρ (α ) ∈ Rp×s , where p is the number of measurements and s
is the number of color channels. Also, we use bold font ρ to denote
a BRDF with color (3 channels), and non-bold font ρ to denote a
single-channel BRDF. We use the PSNR values of rendered images
of BRDFs under the environment map St. Peter’s Basilica [Debevec
1998] before gamma correction to quantitatively compare different
BRDFs. Since we don’t have the groundtruth of diffuse and specular
parts, we are only quantitatively comparing full BRDFs.

Step 1: analytic fitting. In the first step, we first approximate the
achromatic reflectance ρ (average reflectance across color channels)
of the target measured BRDF with a diffuse and a specular analytic
BRDF:

min
αd,αs

d1 (ρ, ρd (αd) + ρs (αs)) . (3)

Here, αd is the parameter controlling the intensity of Lambertian
BRDF ρd (αd), and αs are the 3 GGX parameters of the specular
analytic BRDF ρs (αs). We compared the results of the traditional
non-convex optimizations using four types of metrics:

cubic-root: d1 (ρ1, ρ2) =




((ρ1 − ρ2) · cosMap)

2
3




1

log1: d1 (ρ1, ρ2) =




log

(
ρ1 ·cosMap+ε
ρ2 ·cosMap+ε

)



1
log2: d1 (ρ1, ρ2) =





log
(
ρ1 ·cosMap+ε
ρ2 ·cosMap+ε

)



2
weighted-square: d1 (ρ1, ρ2) =




w · ((ρ1 − ρ2) · cosMap)2


1
(4)

cosMap = max{cos(n ·ωi) cos(n ·ωo), ε }, (5)
where n, ωi and ωo are the normal, incoming light and outgoing
light directions of each MERL measurement, and we use the product
of their cosine terms to reduce the impact of extreme high values
at grazing angles. To avoid a singularity at zero, we set ε = 10−3
in log-based metrics. The weighted-square metric was first used
by Ngan et al. [2005], where w is the solid angle for each MERL
measurement. Fores et al. [2012] recently showed that cubic-root
performs better, and reported that the log-based metric usually
results in over-blurred highlights.

The results of the four different metrics are shown in Fig. 3, and
there are two important observations: First, using the weighted-
square metric usually cannot yield faithful results, mainly because
it is over-emphasizing the highlights at the expense of ignoring the
diffuse parts.1 The quantitative comparisons on all the test cases
(Tab. 1) show that cubic-root, log1, and log2 metrics have better
results than weighted-square. Second, the cubic-root, log1, and log2
metrics can only perform well on some materials: the log-based
metrics faithfully recover the highlights in the second row of Fig. 3,
and in the third row, the cubic-root metric better preserves the
shape of the highlights. We continue the comparison on these three
metrics in the second step.

Step 2: Diffuse-Specular separation. In this step, we seek exact
solutions for the diffuse and specular parts of the measured BRDF,
under the guidance of the analytic BRDF from the previous step. We
want the diffuse part ρd and the specular part ρs to sum up to the
channel-average ρ of the original measured BRDF, while keeping

1Note that Ngan2005 used equal-size binning, while the public dataset has non-uniform
binning to better capture highlight shape. Thus, there are more large-value highlights
in the public dataset, and weighted-square incorrectly gives more attention to these
highlights, performing worse than expected.
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Fig. 3. The results of the first two steps of our separation algorithm. In step 1, we found that the weighted-square metric can’t produce faithful results, and
none of the other three metrics (cubic-root, log1, log2) performs consistently well on all BRDFs. However, the fitting results of all these three metrics leads to
good separations in step 2. We choose to use the log2 metric in the following since it produces shorter tails on the specular parts. Note that we are working
only on achromatic reflectances in this step.
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Fig. 4. The shape of our results in the first two steps. With the result of the
first step as guidance, the result of the second step faithfully recovers the
shape of the original BRDF.

each part close to the corresponding analytic approximation. In
particular, we solve the following optimization problem:

min
ρd,ρs

d2 (ρ, ρd + ρs) + η
d · d2 (ρd, ρd (αd))

+ ηs · d2 (ρs, ρs (αs)) ,
(6)

d2 (ρ1, ρ2) = 

(ρ1 − ρ2) · cosMap

1. (7)
The first term of the optimization supervises the difference between
the sum of diffuse and specular parts and the original BRDF, and the
last two terms add penalties to the differences between each part
and its analytic approximation. This optimization problem involves
solving millions of unknown variables; thus we use a linear BRDF
metric in order to make the problem convex and easy to solve. We
set the regularizer parameters to be ηd = 0.9,ηs = 0.8, and we

empirically found that this works for every BRDF in the MERL
dataset. We will discuss the numerical details of the optimizations
in Sec. 3.2.
We compare the results of the second step using three different

analytic guidances (cubic-root, log1, and log2) from the first step,
and the results are shown in Fig. 3. Although there are differences
between these three analytic guidances, the final results of the
separation look almost the same and all match the groundtruth
very well (step 2 in Fig. 3). The extremely high PSNR values of the
reconstructed BRDFs in Tab. 1 also show that using any one among
these three as guidance could faithfully reconstruct the shape of the
original BRDF. Notice that using the log2 metric tends to result in
higher values in the diffuse term. This means the specular part of
the measured BRDF will have a shorter tail, which is observed in
analytic models [McAuley et al. 2012]. Thus, we use the results of
the log2 metric in the following. The shapes of the reconstructed
BRDFs are shown in Fig. 4. Although we are using Lambertian and
GGX models to guide the diffuse and specular parts, the results
still keep many features in the measured models, rather than being
restricted to the analytic forms.

Step 3: Color restoration. After we obtain the exact diffuse and
specular parts of the measured BRDF, in the final step, we find
the color for each part. Specifically, we determine the diffuse and
specular colors cd, cs by solving the optimization problem with a
properly chosen color metric d3 (ρ1, ρ2):

min
cd,cs

d3 (ρ, ρd · cd + ρs · cs) . (8)

There are mainly two ways to compare the color of the BRDF: one
is to compare the colors of raw BRDF values, and the other one is to
do the comparison on the rendered images of BRDFs [Pereira and
Rusinkiewicz 2012; Sun et al. 2017].We compute the color differences
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Table 1. Quantitative results of our 3-step optimization compared with
other single-step separation algorithms. We show the average PSNR values
on all materials in the MERL dataset for each method. In the first step,
cubic-root, log1, and log2 have better performances. In the second step, the
PSNR values rise to an extremely high level for all three kinds of guidances,
which means all of them yield almost exact reconstructions. The PSNR
values drop in the third step since color is now considered. Compared to
other single-step methods, our 3-step optimization can have much more
accurate reconstructions. Notice that since we don’t have the ground truth
for the diffuse and specular parts, we are only computing the differences
between the images of full BRDFs, in order to evaluate the PSNR numbers.

category step metric PSNR

Ours

step 1
(Achromatic)

cubic-root 41.34
log1 40.97
log2 39.91
weighted-square 28.84

step 2
(Achromatic)

cubic-root as guidance 159.9
log1 as guidance 162.2
log2 as guidance 162.7

step 3 brdf-based 52.11
(Full BRDF) image-based 2-norm 55.34

1 step
method

direct NMF 47.16
Lawrence et al. 15.46
Nielsen et al. 42.05

in the HSI color space since its definition naturally extends to values
larger than 1. Here, we compared the results of color restoration
using two types of color metrics:

brdf-based: d3
(
ρ1, ρ2

)
= HSI (ρ1, ρ2),

image-based: d3
(
ρ1, ρ2

)
= HSI (R · ρ1,R · ρ2),

(9)

where R is the light transport matrix transferring a BRDF into an
image, and HSI (x1, x2) is the metric of the HSI color space defined
as:

HSI (x1, x2) =∥s1 cos h1 − s2 cos h2∥2
+ ∥s1 sin h1 − s2 sin h2∥2.

(10)

Here, s and h are the saturation and hue value of x. Since we have
ensured that ρ = ρd + ρs in the second step, we are not considering
the intensity i here. We use the environment lighting St. Peter’s
Basilica [Debevec 1998] in the image rendering. For the fitting, we
only use one scan line in the middle of the image, but the resulting
PSNR in Tab. 1 is computed on the whole image.
The color restoration results for the two different metrics are

shown in Fig. 5. We found that the image-based metric performs
better than the brdf-based metric (see the error map in Fig. 5), since
the image-based metric weights each BRDF entry by its contribution
to the final image while the brdf-based metric weights each mea-
surement equally. The quantitative comparison results in Tab. 1 also
show that the image-based metric has better performance on color
restoration. Due to these observations, we use the result of image-
based metric in our results. Note that we only use image-based
metric in this step. For the first two steps, we use BRDF-based met-
ric. Please refer to the supplementary material for more validations
under different lighting environments.

brass

green-plastic

original BRDF metric (step 3)
image-basedBRDF-based error map (×30) error map (×30)

Fig. 5. The results of the color restoration step using different color metrics.
We observe that the image-basedmetric is slightly better than the brdf-based
metric.

gray-plastic

original BRDF our separation direct NMF

Lawrence et al. Nielsen et al. Shi et al.
Fig. 6. Compared to other diffuse-specular separation approaches, our al-
gorithm produces a more reasonable separation and better keeps the color.

3.2 Results
Setup. We run our 3-step optimization on all of the materials

in the MERL dataset. We use the MATLAB function fmincon to
optimize the first and third step, and use the CVXOPT package to
handle the second step. Each BRDF needs around 5 minutes to do
the separation, and about 90% of the time is used in the second step.

Comparison. We compared our diffuse-specular separation algo-
rithm with other separation algorithms. The separation results are
shown in Fig. 6, and the quantitative results are listed in Tab. 1. One
simple approach for separation is to directly apply non-negative ma-
trix factorization (NMF) on the BRDF. Although the reconstructed
results look similar to the original BRDF, this method doesn’t have
the concept of diffuse and specular, and therefore doesn’t have
a clean and meaningful separation. The algorithm proposed by
Lawrence et al. [2006] used statistical priors to constrain the shape
of diffuse and specular parts, and mixed the color together with
the reflectances. As a result, their method can’t preserve the colors
very well. The method from Nielsen et al. [2015] decomposes the
BRDF into 5 principal components in log space. We take the second
component as the diffuse part (as stated in their paper) and the rest
as the specular part. Since it mixed the diffuse and specular part
together when doing the principal component analysis, it doesn’t
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nickel

specular part

specular analytic

Fig. 7. Plot and images of nickel, its specular component, and its specular
analytic fitting along themirroring directions. The BRDF value is the average
value across all color channels. Our optimization is guided by the analytic
specular BRDF, but we avoid its high values at the grazing angles in the final
result. The separated specular part faithfully models the original BRDF.

color-changing-paint1

image-based error map (×15)

Fig. 8. Limitation of our diffuse-specular separation. We can’t reproduce
the color of a material with multiple colors in its specular part.

yield a meaningful separation. We also compared with an image-
based separation algorithm [Shi et al. 2017], where the input is the
image of the BRDF rather than the raw BRDF values. Due to the
ambiguity between shape and BRDF, their separation results fail
to recover the color and the appearance. In comparison, starting
with an analytic fitting, our method could generalize the concept of
diffuse and specular to the space of measured BRDFs. Thus, com-
pared to other single-step algorithms, our 3-step algorithm could
faithfully reproduce the appearances and colors for both diffuse and
specular parts in all kinds of materials.

Grazing angles. The specular component from our separation
largely follows the shape of the original measured BRDF at grazing
angles. To test this, Fig. 7 plots the average BRDF values across
the color channels of nickel along the mirroring directions (i.e.,
plots of different θd values for θh = 0). Since nickel is a metal, the
diffuse component is very small and the BRDF can essentially be
represented by only the specular component. Although the analytic
specular BRDF has very high values at the grazing angles because
of Fresnel effects, the specular component from the diffuse-specular
separation by our method is very accurate, largely following the
curve of the original BRDF. Since the MERL dataset was captured
using spheres [Matusik et al. 2003a], the pixel footprints cover a
large region at the grazing angle. As a result, the BRDF values
are much lower at grazing angles than predicted by analytic mod-
els [Holzschuch and Pacanowski 2017].

Limitation. Figure 8 shows a failure case of our separation, where
the color on the material is changing due to diffraction. As a result,

the color restoration algorithm can only yield an average color for
its specular part.

4 MEASURED BRDF EDITING
A measured BRDF can be used in a much more flexible way after
diffuse-specular separation in the form of Equ. 1. In this section,
we show new types of simple editing operations, which have been
straightforward for analytic BRDFs but have not so far been easy to
do for measured BRDFs [Matusik et al. 2003b; Tsirikoglou et al. 2016;
Serrano et al. 2016; Sun et al. 2017]. In Sec. 5, we develop a com-
pact representation of measured BRDFs after principal component
analysis on the separated diffuse and specular parts, while Sec. 6
relates measured and analytic BRDFs and demonstrates robust and
efficient analytic fitting.

Editing Colors. The key point of the separation is to decouple the
diffuse and specular parts, and then decouple the color from each
reflectance. One can then apply traditional color theory to change
the color for each part independently. We express the color in the
HSI space, which allows us to tune the hue and the saturation easily.
Editing the diffuse color is shown in Fig. 9a. Notice that the color
and the shape of the highlights do not change when we alter the
diffuse color. We are also allowed to change the specular hue of a
measured BRDF (Fig. 9b).
Color editing is straightforward in analytic BRDFs, since it’s de-

fined as the sum of the diffuse and specular parts, each with a single
color. Some previous work has tried to edit measured BRDF col-
ors, but this has always been difficult, since each BRDF sample is a
mixture of diffuse and specular parts, each with its own color. Ma-
tusik et al. [2003a] labelled the BRDF with the color, while Serrano et
al. [2016] embed the color information into the representation of
achromatic reflectances. However, the colors are still not intuitive or
well-defined. One can also imagine changing the color using image-
enhancing softwares such as Photoshop. However, since it doesn’t
have the concept of diffuse and specular, changing the diffuse color
might also affect the color of specular highlights. With our method,
we can treat the color of the diffuse and specular part separately,
and perform intuitive editing in the HSI color space.

Highlight Removal. Our separation algorithm enables us to re-
move the highlights on measured BRDFs by simply controlling the
ratio of the specular to the diffuse component. As shown in Fig. 9c,
the leftmost bunny with a very glossy surface gradually becomes a
bunny with no highlights. Previous highlight removal algorithms
usually focus on removing highlights in images, which contain in-
formation on both the material and the lighting. For our method,
we are doing the highlight removal only on the BRDF space.

Mixing Reflectances. Separating the diffuse and specular parts
also allows us to recombine them from different materials. Figure 9d
shows an example of mixing the diffuse and specular parts from
different measured BRDFs. Although we are still not capable of
editing the roughness or the index of refraction of the reflectances
as in analytic models, we can generate novel BRDFs by choosing the
desired diffuse and specular parts from the dataset and then mixing
them together. Since the measured BRDFs are essentially lookup
tables, this kind of edit was previously not possible on measured
BRDFs.
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edit diffuse hue

edit diffuse saturation

edit specular hue

decrease specular

exchange specular parts results

(a) (b) (c)

(d)

Fig. 9. Our diffuse-specular separation gives measured BRDFs a lot more flexibility. We can change (a) the diffuse color and (b) the specular color of the
measured BRDF, without affecting the other part. We can also (c) do a highlight removal on the BRDF space. In addition, we can (d) create new measured
BRDFs by taking the diffuse and specular parts from two different measured BRDFs and mixing them together.

5 COMPACT MEASURED BRDF MODEL
We now investigate a compact measured BRDF model enabled by
the diffuse-specular separation. We conduct principal component
analysis (PCA) on both the diffuse and specular components. Previ-
ously, Nielsen et al. [2015] used PCA on the MERL dataset and found
that measured BRDFs lie in a low-dimensional space. However, they
treated each color channel independently and the contributions
of diffuse and specular parts were mixed together. By doing PCA
on the diffuse and specular parts separately, we can yield a more
intuitive and more compressed result.

5.1 Methods
Diffuse. The separation results in Sec. 3 show that the structure of

diffuse BRDFs is relatively simple. Thus, we directly do the principal
component analysis on the diffuse parts of all measured BRDFs
from the MERL dataset. We didn’t subtract the mean when doing
PCA, since we want our model to be similar to the Lambertian
model, which can be scaled by a single intensity parameter αd. The
result of PCA shows the high redundancy of information in the
diffuse part: around 99% of the energy is concentrated in the first
principal component. The images of a diffuse BRDF reconstructed
using 1 and 2 principal components (Fig. 10) further shows that the
diffuse part lies in a very low dimensional space. Thus, we choose
to represent the diffuse BRDF of measured materials using only 1
principal component:

ρd = Qd · xd, (11)
where Qd ∈ R

p×1 is the first principal component learned by PCA,
and xd is the coefficient that corresponds to the first principal com-
ponent.

We also present a comparison between the Lambertian model and
the shape of the first principal component in Fig. 10. The principal
component largely models the Lambertian model, and has some fall
off at the grazing angles. The diffuse falloff at grazing angles comes
from numerical issues, and has little effect on the final images, as
shown in the sphere images of Fig. 10. Specifically, the weighting
term cosMap (Equ. 5) becomes very small at grazing angles. If the
values of the diffuse BRDF are also small (around 10−3 or smaller,
which is the case for about 30% of the MERL dataset, mostly metals),
then the multiplied values will be too small to robustly optimize for.
The relatively simple structure of the diffuse parts allows us to

draw a direct mapping from the diffuse part of measured BRDF

diffuse part

lig
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-r
ed

-p
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nt

1 diffuse PC 2 diffuse PCs Lambertian

Fig. 10. Reconstruction results of the diffuse part of a measured BRDF using
principal component analysis. Using 1 principal component (PC) is sufficient
to recover the appearance of the diffuse part.

to the Lambertian model. Given the diffuse part of a measured
BRDF ρd = Qd · xd, we can get the exact form of the corresponding
Lambertian BRDF ρd (αd) =

αd
π :

αd = argmin
α



Qd · xd − ρd (α )

22

αd =
π · 

Qd

22


Qd

1

· xd. (12)

This equation shows the linear relation between the analytic pa-
rameter αd and measured PC coefficient xd, which enables simple
conversion between the Lambertian model and our model of diffuse
BRDFs.

Specular. The specular parts show much more complicated be-
haviors. We use the log-relative mapping [Nielsen et al. 2015] before
doing PCA:

д(ρs) = log (ρscosMap + ε ) , (13)
where the weight cosMap is used to avoid the high values in grazing
angles, and ε is still 10−3 to avoid a singularity at zero. After doing
the mapping, the values of the measured BRDFs are projected into
a log space, where highlights and off-peak parts are comparable.
Compared to the mapping from Nielsen et al. [2015], we omitted
the denominator in the log function, since it will only result in a
mean shift in PCA. We then do the principal component analysis on
the mapped values, so that the specular part can be expressed as:

ρs = д
−1 (Qs · xs + µs) , (14)

where Qs are the learned principal components, xs are the corre-
sponding coefficients, and µs is the shifted average for the mapped
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Fig. 11. Reconstructed specular parts of the measured BRDFs using dif-
ferent numbers of principal components (PCs). The first row shows the
specular shapes of blue-metallic-paint2 under different reconstructions.
These are value vs angle plots in a polar coordinate system for in-plane mea-
surements; the different colors denote the RGB components. We found that
using 3 principal components can faithfully reproduce a wide range of specu-
lar appearances (chrome and yellow-matte-plastic) in the MERL dataset.
Please zoom in to see the small differences between rendered materials.

Diffuse

Specular peak

Fresnel 
peak

Grazing 
retro-

reflection

Fig. 12. Comparison of the BRDF slices of the specular principal components
using our method and Nielsen et al. ’s. We don’t need a principal component
to model the diffuse part like the second component of Nielsen et al. ’s, thus
our method yields more compact results.

values. д−1 (·) is the inverse function of the log mapping д(·). In
Fig. 11, we show that using 3 principal components is sufficient to
reconstruct almost all kinds of specular parts in the MERL dataset.
We can recover the overall intensity (chrome) as well as the high-
light shape (yellow-matte-plastic), compared with using only
2 principal components. The reconstructed BRDF at each channel
also matches the specular part very well (blue-metallic-paint2).
Figure 12 shows the principal components visualized as BRDF

slices [McAuley et al. 2012], compared with the principal compo-
nents from Nielsen et al. Since we have separated the diffuse and
specular term, we don’t observe diffuse terms in the principal com-
ponents: the sharp highlights usually observed in metals and plastics
are mostly contained in the first principal component; the second
principal component models the width of the highlights which
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Fig. 13. Full BRDFs reconstructed using our method, compared with the
method from Nielsen et al. .

comes from the roughness of the surface; the third principal com-
ponent controls the Fresnel effect of the material; the shapes of
specular highlights and Fresnel terms are further refined by the last
two principal components. On the other hand, the second principal
component from Nielsen et al. mixed the diffuse and the scattered
highlights together. Thus, their method requires more principal
components to model the appearance.

5.2 Results
We compare our results to the method from Nielsen et al. [2015] in
Fig. 13. Our method differs with the previous method in two ways.
First, we do the analysis on the diffuse and specular parts of the
measured BRDFs separately, whereas the previous method directly
applied on the whole BRDFs. As a result, the materials reconstructed
by our method have less ringing artifacts compared to the previ-
ous method (third row of Fig. 13). Second, we have extracted the
colors from the BRDF and do the analysis only on the achromatic
reflectances, while the training data from the previous method still
contains color dependencies. Due to these two key changes, our
method can express a measured BRDF in a more compact and ef-
ficient way. Please refer to the supplementary material for more
results.
Figure 14 shows the average reconstruction errors of all MERL

BRDFs with our method, compared with those with Nielsen et
al. Here, we use 2 parameters for each color (we model the RGB
color to have average value 1), 1 principal component for the diffuse
part, and vary the number of principal components for specular.
Since we have separated the color from reflectance, our method
yields small errors with fewer parameters compared with Nielsen et
al. , where they ignore the color coherence and use the same number
of coefficients to reconstruct each color channel.

Our full measured model is expressed as:

ρ = cd ·Qdxd + cs · д
−1 (Qsxs + µs) . (15)

For our method, only 8 coefficients (parameters) are needed to specify
a full measured BRDF (1 for diffuse PC coefficient xd, 3 for specular
PC coefficients xs, and 2 for each normalized color cd, cs), whereas
previously 15 coefficients (5 coefficients for each color channel)
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Table 2. Quantitative results of our method using different numbers of
parameters, compared with the method from Nielsen et al. .

Parameter
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter
(Nielsen) xRGB

1 xRGB
2 xRGB

3 xRGB
4 xRGB

5

PSNR 23.3 34.0 40.2 41.7 44.0
Parameter
(Ours) cd xd cs xs1 xs2 xs3 xs4 xs5 xs6 xs7 xs8 xs9 xs10

PSNR 28.8 34.7 40.2 42.0 42.4 43.5 44.5 45.1 45.3 45.5 46.0

1 diffuse PC + 
3 specular PCs

1 diffuse PC 5 PCs × 3 channels

Number of Coefficients

PS
N

R

Fig. 14. Quantitative results of our method using different numbers of
parameters, compared with the method from Nielsen et al. By doing the
analysis on diffuse and specular parts separately, we can represent the
BRDFs with fewer coefficients.

were needed. Note that even for the analytic GGX or similar model,
we also need 8 parameters2 to specify a full BRDF. Note that our
measured BRDF model is aimed at representing a material with one
diffuse lobe and one specular lobe, which is the same as traditional
analytic models. Thus, our method allows users to store measured
BRDFs using same amount of storage as analytic BRDFs, while
faithfully keeping the accuracy of measured BRDFs.

5.3 Limitations
Figure 15 show two failure cases of our approach. In the first row,
using 3 specular coefficients is not sufficient to reproduce the com-
plicated appearance of two-layer-gold, since the specular part of
this material has two layers; however, we can accurately reproduce
the reflectance by using 5 specular coefficients. The method from
Nielsen et al. gives a good reconstruction of this material, with the
expense of using 15 coefficients in total. In the second row, the high
values at grazing angles are not captured in our reconstruction re-
sults nor in the result from Nielsen et al. . We believe this is because
the high values come from the subsurface scattering of the material
during measurement, rather than from the BRDF. Another limita-
tion of our method is that we also need to store the precomputed
principal components, rather than just the 8 coefficients. However,
these principal components are the same for all measured BRDFs
and need only be computed and stored once; we will make them
available online upon publication.

6 RELATING AND FITTING TO ANALYTIC BRDFS
The measured BRDFmodel introduced in Sec. 5 and Equ. 15 can com-
press a measured BRDF to the same size as an analytic BRDF. This
compact expression enables a direct mapping between the diffuse
part of the measured and analytic models (Equ. 12), and embeds the
specular part of the measured BRDF in a low-dimensional principal
2For GGX, each color needs 2 parameters. Diffuse part needs 1 to control the intensity,
and specular part needs 3 to vary the intensity, roughness, and index of reflection (IOR).
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Fig. 15. Limitations of our measured BRDF model. Our model can’t match
the exact highlight shape of two-layer materials using 3 specular principal
components (first row). Also, we can’t recover the large Fresnel effect of
some materials, which is possibly introduced by subsurface scattering.

component (PC) space. In this section, we study the relation be-
tween the specular parts of the measured and analytic BRDFs in the
PC space, and show their similarities and differences. Based on the
analysis, we further introduce a robust, efficient, and simple fitting
algorithm for complex materials with two-lobe specular parts.

6.1 Joint Training
In order to compare and analyze two different BRDF models, we
project the analytic BRDFs onto the space spanned by the principal
components. However, since the measured principal components
are trained only on measured data, they only encode the structure
of measured BRDFs. As a result, directly projecting analytic BRDFs
leads to artifacts, as shown in the second row of Fig. 16. In order to
resolve this problem, we include 128 specular BRDFs from the GGX
model, and redo a joint principal component analysis together with
the original measured specular BRDFs.3 In this way, we can slightly
modify the principal components to also model the structure of the
analytic BRDFs. We call the new principal components the joint
principal components Qs,joint, and the spanned space as joint-PC
space.

Figure 16 illustrates the joint principal components and the origi-
nal measured principal components. Previously, the first measured
principal component has some fall-off at the grazing angle, since the
original measurements are unreliable in this region. By including an-
alytic BRDFs, the first principal component includes a more obvious
Fresnel effect (see the upper-right corner of PC 1). Also, the scattered
highlight part in the second joint principal component extends more
to the grazing angle. We also included the principal components
trained with solely analytic BRDFs, and we can observe how the
joint principal components contain features from both the analytic
and measured BRDFs. The last two columns of Fig. 16 show an ana-
lytic BRDF and a separate measured BRDF projected to different PC
spaces. Compared to the original PC space which is trained only on
measured data, the joint-PC space can better preserve the appear-
ances of analytic BRDFs (the analytic BRDFs shown here are not
3We take 4 intensity (ρ0) samples from the range [0.01, 0.6], 8 roughness (m) samples
from [0.005, 0.8], and 4 IOR(n) samples from [1.3, 3.0].We sample all three parameters
in the log space in order to have a uniform distribution in the PC space. This gives us
4× 8× 4 = 128 analytic BRDFs. We pick the number 128 to roughly match the number
of analytic BRDFs.
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measured PC space

joint PC space

analytic PC space

analytic BRDF measured BRDF

measured PC 1 measured PC 2 measured PC 3

joint PC 1 joint PC 2 joint PC 3

analytic PC 1 analytic PC 2 analytic PC 3

Fig. 16. The first three principal components trained from solely measured
BRDFs in MERL dataset (second row), from analytic and measured BRDFs
together (third row), and from solely analytic BRDFs (last row). We also
compare the reconstruction results under these three spaces. By including
analytic BRDFs into training, we can better recover the appearances of
analytic BRDFs (fourth column), while still keeping the fidelity of measured
BRDFs (last column).

presented in the training data). In the last column, we demonstrate
that including analytic data into training does not introduce visible
artifacts to the reconstructed measured BRDFs, while training only
analytic BRDFs may lead to some intensity mismatch (please zoom
in to see the difference in the last column). In other words, the joint
principal components can represent both analytic and measured
BRDFs.

6.2 Analytic Gamut in Joint-PC Space
We now densely sample 16,000 analytic parameters from the GGX
model4, and project each analytic BRDF to the joint-PC space after
the log-relative mapping д (Equ. 13), according to the equation:

xs = argmin
x




(Qs,joint · x + µs,joint) − д(ρs)



2

=
(
Qs,joint

T · Qs,joint
)−1
· Qs,joint

T
(
д(ρs) − µs,joint

)
,

(16)

whereQs,joint and µs,joint are the principal components and themean
from joint training. ρs can be any specular BRDF to be projected;
besides the densely-sampled analytic BRDFs, we also project the
specular parts of all the measured BRDFs from the MERL dataset
(specular MERL BRDFs) to the joint-PC space. After the projection,
we can represent both analytic and measured BRDFs with a point
in the joint-PC space. In Fig. 17, we visualize the projected analytic
gamut and the measured BRDFs in the joint-PC space, which has
three dimensions. We color-code the analytic points according to
their intensity parameter ρ0 (see Equ. 2), and mark all the specular

4We take 20 intensity (ρ0) samples from [0.01, 0.6], 40 roughness (m) samples from
[0.005, 0.8], and 20 IOR(n) samples from [1.3, 3.0], all in log space. This gives us
20 × 40 × 20 = 16, 000 analytic BRDFs.

MERL BRDFs as red. Notice that the analytic BRDFs here are all
simple BRDFs with only one lobe.
As shown in the front view of Fig. 17, the analytic gamut lies in

a thin manifold in the joint-PC space. It has a highly non-convex
shape, which looks like a “baseball glove.” Also, the intensity ρ0 and
the index of refraction n of the GGX model are correlated in the
space. The roughnessm is largely perpendicular to the other two
parameters, and has a high impact on the appearance since its span
is wider. This is to be expected, since increasing the intensity ρ0
and IOR n will both yield a BRDF with brighter highlights, while
the roughnessm mainly controls the width and the shape of the
highlights.

The relative positions of the specular parts of MERL BRDFs (red
points in Fig. 17) in the joint-PC space are also worth noting. In
the back view of Fig. 17, we can see that not all the MERL BRDFs
lie inside the analytic gamut. The measured materials on the right
side of the back view, which have larger roughness values and
smoother highlights, tend to coincide more with the analytic gamut.
For instance, for thematerials shown in insets 1a and 2a of Fig. 17, we
can easily find corresponding analytic BRDFs in the analytic gamut,
which are shown in insets 1b and 2b. We can also observe some
measured materials that reside in the hollow part of the "baseball
glove" outside the analytic gamut, such as insets 3a (violet-acrylic)
and 4a (two-layer-gold) in Fig. 17. Often, the specular parts of these
materials consist of more than one lobe.

The measured BRDFs on the left side of the back view sometimes
lie above the analytic gamut. As a result, for the specular part shown
in inset 5a, we cannot easily find an analytic BRDF with a similar
appearance. The material shown in inset 5b has mismatches on the
highlights but keeps the overall intensity. Another analytic BRDF
in inset 5c has a more similar highlight shape, but the intensity
becomes lower. There are mainly two reasons that contribute to this
mismatch. First, since the analytic BRDF is only an approximation,
the model is not accurate enough to capture the measured data.
Second, the measured BRDF might be the sum of the BRDFs from
multiple lobes, which can’t be represented by a one-lobe analytic
BRDF. As we will show in Sec. 6.3, our framework can resolve the
multi-lobe problem in a robust and efficient way.

6.3 Robust and Efficient BRDF Fitting
With the analytic and measured BRDFs projected to the same space,
we further investigate the problem of finding an analytic BRDF with
the closest appearance to a measured BRDF. The analytic formula
for fitting the diffuse part is given in Equ. 12. Here, we focus on
fitting only the specular parts of BRDFs.

6.3.1 BRDF Metric. Following the metric used in Equ. 16, we
define the BRDF metric on the joint-PC space as the squared L2
norm of the BRDF after the log-relative mapping (Equ. 13). For each
data point in the joint-PC space, this metric can be computed as

d (xs1, xs2) =



(Qs,joint · xs1 + µs,joint) − (Qs,joint · xs2 + µs,joint)





2
2

=



Qs,joint · (xs1 − xs2)





2
2,

= (xs1 − xs2)T · Qs,joint
TQs,joint · (xs1 − xs2).

(17)
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PC 3

PC 3

Front View

Back View

Top View

IOR Intensity

Roughness

(4a)(3a)

(2a)(1a)

(4b)(3b)

(2b)(1b)

(5a)

(5b)(5c)

Measured BRDF 
Analytic BRDF

Fig. 17. Analytic and measured BRDFs plotted in the joint-PC space. The red points are the specular parts of MERL BRDFs mapped to joint-PC space, and the
blue-to-yellow points are projected analytic BRDFs color-coded with their intensity ρ0. Orange points (insets 1a - 5a) are some representative measured
BRDFs, and light blue points (insets 1b - 5b) are their nearest analytic BRDFs in the analytic gamut. Measured BRDFs 1a and 2a lie inside the analytic
gamut, and closely match their analytic counterparts 1b and 2b. Measured BRDFs 3a and 4a are far away from the analytic gamut and cannot be fit well by
single-lobe analytic BRDFs. Measured BRDF 5a has sharp highlight, so its nearest analytic 5b matches its intensity but has blurry highlights. Analytic BRDF
5c is manually selected to match the highlight of (5a), but it fails to reproduce the overall intensity of 5a.

Notice that the joint principal components are orthogonal to each
other by definition, thus the matrix Qs,joint

TQs,joint is a diagonal
matrix. If we further normalize each principal component to have
L2 norm 1, then the distance metric becomes simply:

d (xs1, xs2) = ∥xs1 − xs2∥22. (18)

This equation means that the BRDF metric on the joint-PC space can
be easily computed by the L2 distance of the joint-PC coefficients.

6.3.2 One-lobe Fitting. The BRDFmetric defined in Equ. 18 leads
to a simple and efficient one-lobe fitting algorithm: we can project
the specular part of the target measured BRDF onto the joint-PC
space, and then find the nearest neighbor from the analytic gamut.5
The insets in Fig. 17 show some results of the nearest neighbor fitting:
As discussed before, the smooth measured BRDFs (1a, 2a) can easily
find very similar corresponding materials (1b, 2b) in the analytic
gamut. For materials with multiple lobes in their specular parts
(3a, 4a), it’s almost impossible to find one-lobe analytic BRDFs in
the gamut that have similar appearances (see the one-lobe fitting
results in 3b and 4b). The materials in the right side of the back
view (5a) contain sharp highlights, and their nearest analytic BRDFs
(5b) usually have blurry highlights. There also exist materials in the

5We use the nearest neighbor library from the Python package sklearn, which uses a
KD-tree to do the nearest neighbor search.
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Fig. 18. The one-lobe fitting result of our nearest neighbor fitting algorithm
compared with the traditional log2 fitting. There two results are very similar
to each other since our nearest neighbor search is essentially finding the L2
optimum in a log space. Nevertheless, our fitting is more efficient and can
find the global optimum.

gamut that better match their highlights (5c), but the accuracy in
the low-intensity parts is sacrificed.
Figure 18 shows that our results have similar highlights as log2

fitting. Note that we are essentially doing the same optimization as
the log2 fitting (see Equ. 4 for the exact metric), since we are finding
the L2-minimum after a log mapping. Since the logarithm function
places more penalty on the low-value mismatch, we yield blurry
highlights for the material shown in Fig. 18. However, we perform
the optimization in an efficient and globally optimal way, which
will benefit the two-lobe fitting algorithms we will introduce next.
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Fig. 19. An overview of the direct projection and iterative projection. For
direct projection, we only process till (2b), and our final result is (1b) + (2b).
For iterative projection, we iteratively calculate the residual and project it
onto the analytic gamut using nearest neighbor search until convergence.

Level 1

Level 2

……Level 3

Fig. 20. We present a 2D view of the 3D analytic gamut. In our stratified
search algorithm, we present the gamut represented using a hierarchy of
strata. At each level, we divide the current stratum into several small strata
with k-means clustering. During searching, we only evaluate the center
point of each stratum, and then proceed to the next level by restricting our
searching area to the stratum with the lowest fitting errors on its center.

6.3.3 Two-lobe Fitting. Since one lobe is not sufficient to ac-
curately model the specular parts of some measured BRDFs, we
develop a two-lobe fitting algorithm. Our goal is to find two ana-
lytic BRDFs whose sum most closely matches the target specular
part. Notice that although we can represent analytic BRDFs as the
joint-PC coefficients in the joint-PC space, we can’t directly add the
coefficients together since the joint-PC space is constructed with
logarithm mapping. Thus, we have to consider the residual in the
BRDF space:

Residualρs (α
(1)
s ) = ρs − ρs (α

(1)
s ), (19)

where ρs is the specular part of the target measured BRDF, and
ρs (α

(1)
s ) is the analytic BRDF of the first lobe.

One straightforward algorithm is to first do a nearest neighbor
fitting for the target measured BRDF, then do another nearest neigh-
bor fitting on the residual. We call this algorithm direct projection.
However, this greedy method cannot yield an optimum. An im-
proved version of this algorithm is to do an iterative projection: at
each step, we fix the BRDF of one lobe, and do the nearest neighbor
fitting for its residual; we alternate between lobes until it converges.
Figure 19 illustrates the basic idea of these two algorithms. Although
the iterative projection algorithm is efficient and is able to find an
optimal solution, we can only guarantee a local optimum.

We can also solve this problem in a brute-force way. Notice that
once we determine the analytic BRDF of the first lobe, we can
immediately find the second-lobe BRDF by doing a nearest neighbor
fitting on the residual. By enumerating all possible first-lobe BRDFs

ALGORITHM 1: Stratified Search Algorithm

/* We construct the strata hierarchy by calling

ConstructStrataHierarchy(analytic gamut). */

Function ConstructStrataHierarchy(Stratum s):
if number of points in s > thres then

// We use thres = 80 in practice.

Divide the stratum s into small strata s1, s2, · · · , sl using k-means;
for each small strata si do

ConstructStrataHierarchy(si);
end

end
/* Each point in the analytic gamut has a position xi in the

joint-PC space, and a corresponding analytic parameter αi.
We use xi and αi to present the data point in the analytic
gamut interchangeably. */

Function StratifiedSearch(target measured BRDF ρs):
current stratum s ← analytic gamut;
while true do

Initialize ErrorArray;
Initialize SecondLobeArray;
for each substratum si of current stratum s do

/* If current stratum s is in the highest level,
we just iterate over all the points in the
current stratum. */

αi ← center point of si;
First lobe: ρ (1)

s ← ρs (αi);
Residual: ρs − ρ

(1)
s ;

Project the residual to point xres in the joint-PC space;
Find xk: the closest point of xres in the full analytic gamut;
αk ← corresponding analytic parameter of xk;
SecondLobeArray[i]← αk;
Second lobe: ρ (2)

s ← ρs (αk);
ErrorArray[i]← 


д (ρs) − д (ρ

(1)
s + ρ

(2)
s )


2;

// g is the log-relative mapping

end
opt← argmin

x
ErrorArray[x];

if current stratum s is in the highest level then
// In practice, the highest level is level 4.

First lobe parameter α (1) ← αopt;
Second lobe parameter α (2) ← SecondLobeArray[opt];
return α (1), α (2) ;

else
current stratum s ← substratum sopt of the current stratum s ;

end
end

in the analytic gamut, we can just pick the one which yields the
lowest reconstruction error. Clearly, this exhaustive search is robust
and can guarantee a globally optimal solution, but the enumeration
is time-consuming.

In order to improve the time efficiency, we exploit the smoothness
and locality of the gamut. An overview of our stratified search algo-
rithm is shown in Fig. 20. We first construct a hierarchy of strata on
the analytic gamut by dividing the gamut into several small strata
using k-means clustering, and recursively dividing each small stra-
tum until each stratum is left with sufficiently few analytic points.
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Fig. 21. Analytic fitting results using different algorithms. Compared to the traditional non-convex optimization using different metrics, the stratified search
algorithm can reproduce the full measured BRDF in a more robust and efficient way. The leftmost column shows one-lobe nearest neighbor fitting as a baseline.

In practice, we divide each stratum into 12 small strata, and allow
them to have some overlap. In this way, the hierarchy has 4 levels,
where the strata in the lowest level have no more than 80 analytic
points. This kind of hierarchical structure enables us to search for
the optimum efficiently. When we are given the specular part of a
measured BRDF, we first enumerate the first-lobe analytic BRDF
from only the centers of the strata in the first level, which is simply
the full analytic gamut. We then directly obtain the second-lobe
BRDF by finding the closest analytic point of the residual in the full
gamut using nearest neighbor fitting as usual. After that, we pick
the center which produced the lowest fitting error, and continue to
search in its stratum in the next level of the hierarchy. Algorithm 1
details the construction and searching algorithm.

We build the stratified search algorithm under the assumption that
the adjacent points in the analytic gamut have similar appearances.
In this way, we can avoid searching for all possibilities. However, we
cannot strictly guarantee a global optimum, since the discretization
of the strata may slightly miss the optimum near the boundary.
We call our result stratified global optimum, since it is the global
optimum under this stratification. Table 3 shows that in practice
the results are very close to the global optimum from exhaustive
search.

6.3.4 Results. We fit all the full measured BRDFs in the MERL
dataset with one Lambertian for diffuse and two GGX BRDFs for
specular. We use Equ. 12 to map measured diffuse parts to Lamber-
tian, and we use the colors from the diffuse-specular separation. The
summary for different fitting algorithms is shown in Tab. 3. Since
we assume we already have the result of diffuse-specular separation,
we only count the runtime for fitting. We compare our algorithms
with traditional non-convex optimization, where all the parame-
ters and colors are solved in one optimization (using a standard
interior-point method).
One interesting finding in Tab. 3 is that the direct projection

produces worse results than one-lobe fitting. This is mainly because
the residual of the one-lobe fitting result might not be a valid BRDF,
so a direct projection of the residual will add artifacts to the final
result. The performance increases a little when we do the iterative

Table 3. Quantitative results of our two-lobe fitting algorithms compared
with the non-convex optimization. Except for the last two rows which use
10 testing materials, we show the average PSNR values on all materials in
the MERL dataset for each method.

category algorithm robustness PSNR runtime

Ours

nearest global optimum 37.6 0.06sneighbor fit (one-lobe)
direct not optimum 37.3 0.3sprojection
iterative local optimum 38.5 10.8sprojection
stratified stratified 41.3 14.3ssearch global optimum

Traditional log2 fit local optimum 39.4 81.7s
fit cubic-root fit 23.6 177s

Ours(
10 testing
materials

) exhaustive global optimum 38.8 3108ssearch
stratified stratified 38.7 25.7ssearch global optimum

projection. As we can see, the stratified search algorithm has the
best balance between the robustness and efficiency. Compared to
the traditional non-convex optimizations, our algorithm can yield
better results with less time. We also examine the robustness of
the stratified search algorithm by comparing it with the exhaustive
search. We test both algorithms on 10 materials which clearly need
two lobes to model their specular parts. The results indicate that the
stratified search algorithm can yield a result which is very close to
the global optimum in practice with much less time than exhaustive
search.
Figure 21 shows some results using different fitting algorithms.

Nearest neighbor fitting can find the global optimum efficiently,
but the fitting ability is limited when only one lobe is provided for
the specular part. When two lobes are considered for the specular
parts, the problem becomes much more complicated. The results
of the direct projection and iterative projection look similar to the
one-lobe fitting results, which contain very blurry highlights. The
results of the stratified search algorithm visually match the results
of exhaustive search, which are global optima. On the other hand,
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the non-convex optimization method can’t produce faithful recon-
structions: one has to tune the metric and the initial values in order
to avoid the local optima. For our stratified search algorithm, we
can reach a result which is essentially equal to the global optimum
in practice in a short time without tuning parameters. Please refer
to the supplementary material for more results.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we first propose a robust diffuse-specular separation
algorithm for measured BRDFs. This separation enables editing the
diffuse and specular parts of measured BRDFs separately, and leads
to a compact and accurate representation of measured BRDFs. We
further investigate the similarities and differences of analytic and
measured BRDFs in a low-dimensional space, and develop a robust,
efficient and accurate fitting algorithm for complex measured BRDFs
with two-lobe specular parts, which outperforms the traditional
non-convex optimization method.

As for future work, the analytic gamut in the joint-PC space pro-
vides a deeper understanding on the structure of analytic BRDFs.
One could use the ideas of joint-PC space to initialize traditional
fitting algorithms in order to avoid local optima. Also, it would
be interesting to see how this measured BRDF model can apply to
BRDF measurements. One promising way is to develop a framework
to infer the surface texture, normal, or reflectances with sparse sam-
pling. In addition, the generalization of our method to anisotropic
materials [Filip and Vávra 2014] is a challenging problem.
In conclusion, we propose a framework for connecting analytic

and measured BRDFs by doing diffuse-specular separation. The
connection is applicable to a wide range of computer vision and
computer graphics problems. We hope this work could lead to a
deeper understanding of the connection between real-world materi-
als and surface appearance models.
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