Faster GPU Computations Using Adaptive Refinement

Craig Donner Henrik Wann Jensen
University of California, San Diegd

Figure 1:Examples of scenes from [Purcell et al. 2003] rendered using our methods.
Using adaptive refinement, the left image was rendered five times faster, and the right
image was rendered four times faster.

Figure 2: A fragment shader implementing an iterative Mandelbrot Set solver. The
1 Introduction left image is a visualization of the result, and the right image shows the active tiles.
We present a technique for improving the speed of multi-pass GPU e have experimented with both points and quads when tiling
computations by using adaptive refinement. We tile the screen andihe screen. A quad can be a single pixel pixel up to the full size
use occlusion queries to adaptively cull inactive parts of the com- of the viewport. Points are square-shaped and generally have lim-
putation. An implementation of this technique in a photon map jted size, which means more points are required to tile the viewport.
renderer and a Mandelbrot fractal has resulted in speedups of upconceptually, points are easier to draw: only one vertex (rather than
to one order of magnitude. Our technique is applicable to many four) needs to be transformed, and the point can potentially be ras-
of the recently developed multi-pass algorithms running on GPUS. terized with a pixel template of some kind in screen space. Setting
Itis easy to implement and often provides significant speedups by different point sizes when doing adaptive refinement, however, re-
exploiting computational similarity, coherence, and locality. quires changing rendering state, which is known to be inefficient.

2 Methods 3 Results

We propose a method that utilizes the occlusion query feature TO test our methods, we have used a GPU-based photon mapping
present on modern GPUs to adaptively tifgarse multi-pass com- |mplement§tlon using the stenm! sort routing method [P.urcell etal.
putations increasing their overall performance. We define a sparse 2003]. To investigate the effectiveness of adaptive refinement for
multi-pass computation as one where simple 2D primitives are ras- Simple algorithms, we also implemented a small iterative Mandel-
terized to the viewport to generate fragments that execute shaderdrot fractal fragment shader.)

to perform computation, and where some parts of the solution are Our results have varied from small gains to speedups of almost

known before others. Most recent GPU algorithms (e.g. [Bolz et al. three orders of magnitude, depending on tile size and the algorithm
2003]) can be classified as such. considered. In general, the results show significant speedups com-

A common method for generating fragments is to render a sin- Pared with the standard method that uses a single viewport-sized
gle viewport-sized quadrilateral, producing one fragment per pixel, quad. 'I_'he optimal tile size depends on the algorithm itself; sllghtly
and stopping when no fragments are active. The large quad is poorIarger tiles yvork better_W|th smaller fragmen_t programs that finish
choice for sparse algorithms since it wastes processing power onduickly, while smaller tiles may be better suited to complex algo-
fragments that do not perform useful work. Inactive fragments of- Mthms with long fragment programs. o .
ten execute &ILL instruction to indicate that their results should ~_When using a fixed tile size, our results indicate that the best tile
be ignored. Because thALL instruction does not prevent the ex- ~ SiZ€ is from 8 to 32 pixels wide on current hardware. For adaptive
ecution of the fragment shader, but rather the writing of its output, '€finement, our results show that subdividing when 40%-60% of

computation continues to occur over all fragments. The computa- ffagments are active gives the best results. In addition, we found
tion is done when all fragments execut&ELL instruction; this is that setting a minimum tile size of 4 to 8 pixels wide prevents over-
detected using the occlusion query. loading the hardware; smaller tiles slow down the computation due

; to the instruction overhead as well as limited bandwidth from the
Our goal is to execute fragment shaders that produce useful re-) . 9> .
sults in every pass. By dividing the viewport into smaller fixed CPU to the GPU. We did not find significant speed differences be-

sized tiles we can increase the granularity of occlusion queries andt"""a:en using points or quads. i h ad
thereby the efficiency of the computation. This intuition has its lim- or very sparse computations with many passes, the use of adap-

its: many small tiles have higher instruction overhead and require V€ rgflnemgnrt] car;l result in S|gn|f|c3nt s_peﬁdlfps. As an e?ahmpli,
more occlusion queries. By refining from larger to smaller tiles in W€ Observed that the per-pass speedup in the last stages of the pho-

areas where the solution converges quickly, we adaptively isolate ©©n Mapping renderer approached three orders of magnitude.
the active areas of the viewport (see figure 2). References
We keep a queue of active tiles with an associated occlusion . i
BoLz, J., FARMER, |., GRINSPUN, E., AND SCHRODER, P. 2003. Sparse matrix

qu.ery and active fragment Co.unt' After each pags of the Compu- solvers on the gpu: Conjugate gradients and multigrid Pioceedings of ACM
tation, we perform an occlusion query on each tile. Once a tile sicgraPH
no longer has any active fragments, we simply remove it from the PURCELL, T. J.. DONNER, C., CAMMARANO, M., JENSEN, H. W.. AND HANRA-

active queue. HAN, P. 2003. Photon mapping on programmable graphics hardwaRroteed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Graphics Hardware

*{cdonner, henrik@graphics.ucsd.edu

