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Figure 1:Examples of scenes from [Purcell et al. 2003] rendered using our methods.
Using adaptive refinement, the left image was rendered five times faster, and the right
image was rendered four times faster.

Figure 2: A fragment shader implementing an iterative Mandelbrot Set solver. The
1 Introduction left image is a visualization of the result, and the right image shows the active tiles.
We present a technique for improving the speed of multi-pass GPU e have experimented with both points and quads when tiling
computations by using adaptive refinement. We tile the screen andihe screen. A quad can be a single pixel pixel up to the full size
use occlusion queries to adaptively cull inactive parts of the com- of the viewport. Points are square-shaped and generally have lim-
putation. An implementation of this technique in a photon map jted size, which means more points are required to tile the viewport.
renderer and a Mandelbrot fractal has resulted in speedups of upconceptually, points are easier to draw: only one vertex (rather than
to one order of magnitude. Our technique is applicable to many four) needs to be transformed, and the point can potentially be ras-
of the recently developed multi-pass algorithms running on GPUS. terized with a pixel template of some kind in screen space. Setting
Itis easy to implement and often provides significant speedups by different point sizes when doing adaptive refinement, however, re-
exploiting computational similarity, coherence, and locality. quires changing rendering state, which is known to be inefficient.

2 Methods 3 Results

We propose a method that utilizes the occlusion query feature TO test our methods, we have used a GPU-based photon mapping
present on modern GPUs to adaptively tifgarse multi-pass com- |mplement§tlon using the stenm! sort routing method [P.urcell etal.
putations increasing their overall performance. We define a sparse 2003]. To investigate the effectiveness of adaptive refinement for
multi-pass computation as one where simple 2D primitives are ras- Simple algorithms, we also implemented a small iterative Mandel-
terized to the viewport to generate fragments that execute shaderdrot fractal fragment shader. )

to perform computation, and where some parts of the solution are  Our results have varied from small gains to speedups of almost

known before others. Most recent GPU algorithms (e.g. [Bolz et al. three orders of magnitude, depending on tile size and the algorithm
2003]) can be classified as such. considered. In general, the results show significant speedups com-

A common method for generating fragments is to render a sin- Pared with the standard method that uses a single viewport-sized
gle viewport-sized quadrilateral, producing one fragment per pixel, quad. 'I_'he optimal tile size depends on the algorithm itself; sllghtly
and stopping when no fragments are active. The large quad is poorIarger tiles yvork better_W|th smaller fragmen_t programs that finish
choice for sparse algorithms since it wastes processing power onduickly, while smaller tiles may be better suited to complex algo-
fragments that do not perform useful work. Inactive fragments of- Mthms with long fragment programs. o .
ten execute &ILL instruction to indicate that their results should ~_When using a fixed tile size, our results indicate that the best tile
be ignored. Because thALL instruction does not prevent the ex- ~ SiZ€ is from 8 to 32 pixels wide on current hardware. For adaptive
ecution of the fragment shader, but rather the writing of its output, '€finement, our results show that subdividing when 40%-60% of

computation continues to occur over all fragments. The computa- ffagments are active gives the best results. In addition, we found
tion is done when all fragments execut&ELL instruction; this is  that setting a minimum tile size of 4 to 8 pixels wide prevents over-
detected using the occlusion query. loading the hardware; smaller tiles slow down the computation due

; to the instruction overhead as well as limited bandwidth from the
Our goal is to execute fragment shaders that produce useful re- ) . 9> .
sults in every pass. By dividing the viewport into smaller fixed CPU to the GPU. We did not find significant speed differences be-

sized tiles we can increase the granularity of occlusion queries andt"""a:en using points or quads. i h ad
thereby the efficiency of the computation. This intuition has its lim- or very sparse computations with many passes, the use of adap-

its: many small tiles have higher instruction overhead and require V€ rgflnemgnrt] car;l result in S|gn|f|c3nt s_peﬁdlfps. As an e?ahmpli,
more occlusion queries. By refining from larger to smaller tiles in W€ Observed that the per-pass speedup in the last stages of the pho-

areas where the solution converges quickly, we adaptively isolate ©©n Mapping renderer approached three orders of magnitude.
the active areas of the viewport (see figure 2). References
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