
Faster GPU Computations Using Adaptive Refinement

Craig Donner Henrik Wann Jensen
University of California, San Diego∗

Figure 1:Examples of scenes from [Purcell et al. 2003] rendered using our methods.
Using adaptive refinement, the left image was rendered five times faster, and the right
image was rendered four times faster.

1 Introduction
We present a technique for improving the speed of multi-pass GPU
computations by using adaptive refinement. We tile the screen and
use occlusion queries to adaptively cull inactive parts of the com-
putation. An implementation of this technique in a photon map
renderer and a Mandelbrot fractal has resulted in speedups of up
to one order of magnitude. Our technique is applicable to many
of the recently developed multi-pass algorithms running on GPUs.
It is easy to implement and often provides significant speedups by
exploiting computational similarity, coherence, and locality.

2 Methods
We propose a method that utilizes the occlusion query feature
present on modern GPUs to adaptively tilesparse multi-pass com-
putations, increasing their overall performance. We define a sparse
multi-pass computation as one where simple 2D primitives are ras-
terized to the viewport to generate fragments that execute shaders
to perform computation, and where some parts of the solution are
known before others. Most recent GPU algorithms (e.g. [Bolz et al.
2003]) can be classified as such.

A common method for generating fragments is to render a sin-
gle viewport-sized quadrilateral, producing one fragment per pixel,
and stopping when no fragments are active. The large quad is poor
choice for sparse algorithms since it wastes processing power on
fragments that do not perform useful work. Inactive fragments of-
ten execute aKILL instruction to indicate that their results should
be ignored. Because theKILL instruction does not prevent the ex-
ecution of the fragment shader, but rather the writing of its output,
computation continues to occur over all fragments. The computa-
tion is done when all fragments execute aKILL instruction; this is
detected using the occlusion query.

Our goal is to execute fragment shaders that produce useful re-
sults in every pass. By dividing the viewport into smaller fixed
sized tiles we can increase the granularity of occlusion queries and
thereby the efficiency of the computation. This intuition has its lim-
its: many small tiles have higher instruction overhead and require
more occlusion queries. By refining from larger to smaller tiles in
areas where the solution converges quickly, we adaptively isolate
the active areas of the viewport (see figure 2).

We keep a queue of active tiles with an associated occlusion
query and active fragment count. After each pass of the compu-
tation, we perform an occlusion query on each tile. Once a tile
no longer has any active fragments, we simply remove it from the
active queue.

∗{cdonner, henrik}@graphics.ucsd.edu

Figure 2:A fragment shader implementing an iterative Mandelbrot Set solver. The
left image is a visualization of the result, and the right image shows the active tiles.

We have experimented with both points and quads when tiling
the screen. A quad can be a single pixel pixel up to the full size
of the viewport. Points are square-shaped and generally have lim-
ited size, which means more points are required to tile the viewport.
Conceptually, points are easier to draw: only one vertex (rather than
four) needs to be transformed, and the point can potentially be ras-
terized with a pixel template of some kind in screen space. Setting
different point sizes when doing adaptive refinement, however, re-
quires changing rendering state, which is known to be inefficient.

3 Results
To test our methods, we have used a GPU-based photon mapping
implementation using the stencil sort routing method [Purcell et al.
2003]. To investigate the effectiveness of adaptive refinement for
simple algorithms, we also implemented a small iterative Mandel-
brot fractal fragment shader.

Our results have varied from small gains to speedups of almost
three orders of magnitude, depending on tile size and the algorithm
considered. In general, the results show significant speedups com-
pared with the standard method that uses a single viewport-sized
quad. The optimal tile size depends on the algorithm itself; slightly
larger tiles work better with smaller fragment programs that finish
quickly, while smaller tiles may be better suited to complex algo-
rithms with long fragment programs.

When using a fixed tile size, our results indicate that the best tile
size is from 8 to 32 pixels wide on current hardware. For adaptive
refinement, our results show that subdividing when 40%-60% of
fragments are active gives the best results. In addition, we found
that setting a minimum tile size of 4 to 8 pixels wide prevents over-
loading the hardware; smaller tiles slow down the computation due
to the instruction overhead as well as limited bandwidth from the
CPU to the GPU. We did not find significant speed differences be-
tween using points or quads.

For very sparse computations with many passes, the use of adap-
tive refinement can result in significant speedups. As an example,
we observed that the per-pass speedup in the last stages of the pho-
ton mapping renderer approached three orders of magnitude.

References
BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse matrix

solvers on the gpu: Conjugate gradients and multigrid. InProceedings of ACM
SIGGRAPH.

PURCELL, T. J., DONNER, C., CAMMARANO , M., JENSEN, H. W., AND HANRA-
HAN , P. 2003. Photon mapping on programmable graphics hardware. InProceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Graphics Hardware.


