CSE167
Introduction to Computer Graphics
Matthias Zwicker
University of California, San Diego
Spring 2008

NURBS

- Non uniform rational B-splines
- Generalization of Bézier curves
 - Easier to guarantee smoothness of curve
 - Can represent conic sections (circles, ellipses)

Rational curves

- Weight causes point to “pull” more (or less)
- With proper points & weights, can do circles

Curved surfaces

- Described by a 1D series of control points
- A function $x(t)$
- Segments joined together to form a longer curve

Piecewise Cubic Bézier curve

- Parameter in $0 \leq u \leq 3N$

$$ x(u) = \begin{cases} x_0 (1 - 3u), & 0 \leq u \leq 3 \\ x_1 (1 - 3u + 3u^2 - u^3), & 3 \leq u \leq 6 \\ \vdots & \\ x_{N-1} (1 - 3u + 3N - 3N^2 - N^3), & 3N - 3 \leq u \leq 3N \\ x_N (1 - 3u + 3N - 3N^2 + N^3), & 3N \leq u \leq 3N \\ \end{cases} $$

$$ x(u) = \sum_{i=0}^{N} b_i(u) w_i p_i $$

Rational curve

B-spline blending functions $b_i(u)$

Today

Surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Curved surfaces

Curves
- Described by a 1D series of control points
- A function $x(t)$
- Segments joined together to form a longer curve

Surfaces
- Described by a 2D mesh of control points
- Parameters have two dimensions (two dimensional parameter domain)
- A function $x(u,v)$
- **Patches** joined together to form a bigger surface
Parametric surface patch

- $x(u,v)$ describes a point in space for any given (u,v) pair
- u,v each range from 0 to 1

2D parameter domain

Parametric surface patch

- $x(u,v)$ describes a point in space for any given (u,v) pair
- u,v each range from 0 to 1

2D parameter domain

Parametric curves

- For fixed u_0, have a v curve $x(u_0,v)$
- For fixed v_0, have a u curve $x(u,v_0)$
- For any point on the surface, there are a pair of parametric curves that go through point

Tangents

- The tangent to a parametric curve is also tangent to the surface
- For any point on the surface, there are a pair of (parametric) tangent vectors
- Note: not necessarily perpendicular to each other

Surface Normal

- Cross product of the two tangent vectors
- Order matters!

Tangents

- Notation:
 - The tangent along a u curve, AKA the tangent in the u direction, is written as: $\frac{\partial x}{\partial u}(u,v)$ or $\frac{\partial x}{\partial u}(u,v)$ or $x_u(u,v)$
 - The tangent along a v curve, AKA the tangent in the v direction, is written as: $\frac{\partial x}{\partial v}(u,v)$ or $\frac{\partial x}{\partial v}(u,v)$ or $x_v(u,v)$
- Note that each of these is a vector-valued function:
 - At each point $x(u,v)$ on the surface, we have tangent vectors $\frac{\partial x}{\partial u}(u,v)$ and $\frac{\partial x}{\partial v}(u,v)$

Surface Normal

- Cross product of the two tangent vectors
- Order matters!

Bilinear patch

- Control mesh with four points p_0, p_1, p_2, p_3
- Compute $x(u,v)$ using a two-step construction
Bilinear patch (step 1)

- For a given value of u, evaluate the linear curves on the two u-direction edges
- Use the same value u for both:
 \[
 q_0 = \text{Lerp}(u, p_0, p_1) \\
 q_1 = \text{Lerp}(u, p_2, p_3)
 \]

Bilinear patch (step 2)

- Consider that q_0, q_1 define a line segment
- Evaluate it using v to get x
 \[
 x = \text{Lerp}(v, q_0, q_1)
 \]

Bilinear patch

- Combining the steps, we get the full formula
 \[
 x(u, v) = \text{Lerp}(v, \text{Lerp}(u, p_0, p_1), \text{Lerp}(u, p_2, p_3))
 \]

Bilinear patch

- Try the other order
- Evaluate first in the v direction
 \[
 r_0 = \text{Lerp}(v, p_0, p_2) \\
 r_1 = \text{Lerp}(v, p_1, p_3)
 \]

Bilinear patch

- Consider that r_0, r_1 define a line segment
- Evaluate it using u to get x
 \[
 x = \text{Lerp}(u, r_0, r_1)
 \]

Bilinear patch

- The full formula for the v direction first:
 \[
 x(u, v) = \text{Lerp}(u, \text{Lerp}(v, p_0, p_1), \text{Lerp}(v, p_2, p_3))
 \]
Bilinear patch

- It works out the same either way!

\[x(u, v) = \text{Lerp}(v, \text{Lerp}(u, p_0, p_1), \text{Lerp}(u, p_0, p_1)) \]

\[x(u, v) = \text{Lerp}(u, \text{Lerp}(v, p_0, p_1), \text{Lerp}(v, p_0, p_1)) \]

Bilinear patches

- Weighted sum of control points

\[x(u, v) = (1 - u)(1 - v)p_0 + u(1 - v)p_1 + (1 - u)v + uvp_3 \]

- Bilinear polynomial

\[x(u, v) = (p_0 - p_1,d_1)d_2 + (p_2 - p_3)d_3 + (p_4 - p_5)d_4 + d_5 \]

- Matrix form exists, too

Properties

- Interpolates the control points
- The boundaries are straight line segments
- If all 4 points of the control mesh are co-planar, the patch is flat
- If the points are not coplanar, get a curved surface
 - saddle shape, AKA hyperbolic paraboloid
- The parametric curves are all straight line segments!
 - a (doubly) ruled surface: has (two) straight lines through every point

- Not terribly useful as a modeling primitive

Today

Surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Bicubic Bézier patch

- Grid of 4x4 control points, \(p_0 \) through \(p_{15} \)
- Four rows of control points define Bézier curves along \(u \)
 \(p_0, p_2, p_4, p_6; p_1, p_3, p_5, p_7; p_2, p_4, p_6, p_8; p_3, p_5, p_7, p_9 \)
- Four columns define Bézier curves along \(v \)
 \(p_0, p_4, p_8, p_{12}; p_1, p_5, p_9, p_{13}; p_2, p_6, p_{10}, p_{14}; p_3, p_7, p_{11}, p_{15} \)
Bézier patch (step 1)
- Evaluate four u-direction Bézier curves at u
- Get points q_0, q_1

$$
q_u = \text{Bez}(p_0, p_1, p_2, p_3)
$$

Bézier patch (step 2)
- Points q_0, q_1 define a Bézier curve
- Evaluate it at v

$$
x(u, v) = \text{Bez}(v, q_0, q_1, q_2)
$$

Bézier patch
- Same result in either order (evaluate u before v or vice versa)

$$
q_u = \text{Bez}(p_0, p_1, p_2, p_3)
\text{x}(u, v) = \text{Bez}(v, q_0, q_1, q_2)
\text{x}(u, v) = \text{Bez}(v, q_0, q_1, q_2)
$$

Tensor product formulation
- Corresponds to weighted average formulation
- Construct two-dimensional weighting function as product of two one-dimensional functions

$$
x(u, v) = \sum_i \sum_j p_{ij} B_i(u) B_j(v)
$$
- Bernstein polynomials B_i, B_j as for curves

Properties
- Convex hull: any point on the surface will fall within the convex hull of the control points
- Interpolates 4 corner points
- Approximates other 12 points, which act as “handles”
- The boundaries of the patch are the Bézier curves defined by the points on the mesh edges
- The parametric curves are all Bézier curves

Tangents of Bézier patch
- Remember parametric curves $x(u, v)$, $x(u_0, v)$ where u_0, u_1 is fixed
- Tangents to surface = tangents to parametric curves
- Tangents are partial derivatives of $x(u, v)$
- Normal is cross product of the tangents
Tangents of Bézier patch

\[q_0 = \text{Bez}(u, p_0, p_1, p_2, p_3) \]
\[q_1 = \text{Bez}(u, p_4, p_5, p_6, p_7) \]
\[q_2 = \text{Bez}(u, p_8, p_9, p_{10}, p_{11}) \]
\[q_3 = \text{Bez}(u, p_{12}, p_{13}, p_{14}, p_{15}) \]

\[\frac{\partial x}{\partial u}(u, v) = \text{Be}^{\prime}(v, q_0, q_1, q_2, q_3) \]

Tessellating a Bézier patch

- Uniform tessellation is most straightforward
 - Evaluate points on a grid of \(u, v \) coordinates
 - Compute tangents at each point, take cross product to get per-vertex normal
 - Draw triangle strips (several choices of direction)
- Adaptive tessellation/recursive subdivision
 - Potential for “cracks” if patches on opposite sides of an edge divide differently
 - Tricky to get right, but can be done

Piecewise Bézier surface

- Lay out grid of adjacent meshes of control points
- For \(C^0 \) continuity, must share points on the edge
 - Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points
 - So if adjacent meshes share edge points, the patches will line up exactly
 - But we have a crease...

C\(^1\) continuity

- We want the parametric curves that cross each edge to have \(C^1 \) continuity
 - So the handles must be equal-and-opposite across the edge:

Modeling with Bézier patches

- Original Utah teapot specified as Bézier Patches

Today

Surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling
Advanced surface modeling

- B-spline/NURBS patches
- For the same reason as using B-spline/NURBS curves
 - More flexible (can model spheres)
 - Better mathematical properties, **continuity**

Trim curves: cut away part of surface
- Implement as part of tessellation/rendering

Modeling headaches

- Original Teapot isn’t “watertight”
 - spout & handle intersect with body
 - no bottom
 - hole in spout
 - gap between lid and body

NURBS surfaces are flexible
- Conic sections
- Can blend, merge, trim...

But
- Any surface will be made of quadrilateral patches (quadrilateral topology)

Quadrilateral topology

Makes it hard to
- join or abut curved pieces
- build surfaces with awkward topology or structure

Subdivision surfaces

- Arbitrary mesh of control points, not quadrilateral topology
 - No global \(u, v \) parameters
- Can make surfaces with arbitrary topology or connectivity
- Work by recursively subdividing mesh faces
 - Per-vertex annotation for weights, corners, creases
- Used in particular for character animation
 - One surface rather than collection of patches
 - Can deform geometry without creating cracks
Next time

- Advanced shader programming