Announcements

- Project 1 due Friday October 9
- Project 2 due Friday October 16
 - Homework introductions:
 - Daniel: Thu Oct 8, 11am, lab 250
 - Jason: Mon Oct 12, 2pm, lab 250
- TA hours:
 - Jason: Mon, 2-4pm (lab 250); Wed, 2-5pm (lab 270)
 - Daniel: Tue/Thu 11am-1:45pm (lab 250)
- Visual C++ should be installed on all Windows machines in the lab (if not try reboot)
- Gradesource IDs have been sent to everybody’s email addresses
Today

- Viewport transformation
- Barycentric coordinates
- Culling, clipping
- Rasterization
- Visibility
View volumes

• Define 3D volume seen by camera

Perspective view volume

Camera coordinates

Orthographic view volume

Camera coordinates

World coordinates

World coordinates
• Projection matrix is such that
 - User defined view volume is transformed into canonical view volume: cube [-1,1]x[-1,1]x[-1,1]
 - Multiplying vertices of view volume by projection matrix and performing homogeneous divide yields canonical view volume

• Perspective and orthographic projection are treated exactly the same way

• Canonical view volume is last stage in which coordinates are in 3D; next step is projection to 2D frame buffer
Projection matrix

Camera coordinates

Projection matrix

Canonical view volume

Clipping
Perspective projection matrix

- General view frustum with 6 parameters

\[
P_{\text{persp}}(left, right, top, bottom, near, far) = \\
\begin{bmatrix}
\frac{2\text{near}}{right-left} & 0 & \frac{right+left}{right-left} & 0 \\
0 & \frac{2\text{near}}{top-bottom} & \frac{top+bottom}{top-bottom} & 0 \\
0 & 0 & \frac{-(far+near)}{far-near} & -2\text{far}\cdot\text{near} \\
0 & 0 & \frac{1}{far-near} & 0 \\
\end{bmatrix}
\]
Perspective projection matrix

- Symmetrical view frustum with 4 parameters

\[
\mathbf{P}_{\text{persp}}(\text{FOV}, \text{aspect}, \text{near}, \text{far}) =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & \text{tan}(\text{FOV}/2) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \text{near + far} & 2 \cdot \text{near} \cdot \text{far} \\
0 & 0 & \text{near} \cdot \text{far} & \text{near} \cdot \text{far} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Orthographic projection matrix

Camera coordinates

$$P_{\text{ortho}}(\text{right, left, top, bottom, near, far}) = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & -\frac{\text{top} + \text{bottom}}{\text{top} - \text{bottom}} \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$P_{\text{ortho}}(\text{width, height, near, far}) = \begin{bmatrix}
\frac{2}{\text{width}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{height}} & 0 & 0 \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & \frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}$$
Viewport transformation

- After applying projection matrix, scene points are in *normalized viewing coordinates*
 - Per definition range $[-1..1] \times [-1..1] \times [-1..1]$

- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
 - Range depends on window (view port) size: $[x_0...x_1] \times [y_0...y_1]$

- Scale and translation required:

$$D(x_0, x_1, y_0, y_1) = \begin{bmatrix}
\frac{(x_1 - x_0)}{2} & 0 & 0 & \frac{(x_0 + x_1)}{2} \\
0 & \frac{(y_1 - y_0)}{2} & 0 & \frac{(y_0 + y_1)}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{bmatrix}$$
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$$p' = \mathbf{DPC}^{-1}\mathbf{M} p$$

Object space
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

\[p' = DPC^{-1}M p \]

Object space
World space
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix \(M \), camera matrix \(C \), projection matrix \(P \), viewport matrix \(D \)

\[
p' = DPC^{-1}M_p
\]

- Object space
- World space
- Camera space
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$$p' = DPC^{-1}M_p$$

Object space

World space

Camera space

Canonical view volume
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

\[
p' = DPC^{-1}Mp\]

Object space
World space
Camera space
Canonical view volume
Image space
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$$p' = DPC^{-1}Mp$$

$$p' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix}$$

Pixel coordinates: $x'/w', y'/w'$
OpenGL

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$\text{OpenGL \ GL_MODELVIEW \ matrix}$

$p' = DPC^{-1}Mp$

$\text{OpenGL \ GL_PROJECTION \ matrix}$
OpenGL

• **GL_MODELVIEW, $C^{-1}M$**

 - Up to you to define

• **GL_PROJECTION, P**

 - Utility routines to set it by specifying view volume: glFrustum(), glPerspective(), glOrtho()

 - Do not use utility functions in homework project 2

 - You will implement a software renderer in project 3, which will not use OpenGL

• **Viewport, D**

 - Specify implicitly via glViewport()

 - No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION
Today

- Viewport transformation
- Barycentric coordinates
- Culling, clipping
- Rasterization
- Visibility
Rendering pipeline

Scene data → Modeling and viewing transformation → Shading → Projection → Rasterization, visibility → Image

Lectures 2 and 3
Lectures 6-8
Lecture 4
Lecture 5 (today!)
Implicit 2D lines

- Given two 2D points a, b
- Define function $f_{ab}(p)$ such that $f_{ab}(p) = 0$ if p lies on line defined by a, b
Implicit 2D Lines

• Point \(\mathbf{p} \) lies on the line, if \(\mathbf{p} - \mathbf{a} \) is perpendicular to the normal of the line

\[
(a_y - b_y, b_x - a_x)
\]

• Use dot product to determine on which side of the line \(\mathbf{p} \) lies. If \(f(\mathbf{p}) > 0 \), \(\mathbf{p} \) is on same side as normal, if \(f(\mathbf{p}) < 0 \) \(\mathbf{p} \) is on opposite side. If dot product is 0, \(\mathbf{p} \) lies on the line.

\[
f_{ab}(\mathbf{p}) = (a_y - b_y, b_x - a_x) \cdot (p_x - a_x, p_y - a_y)
\]
Barycentric coordinates

- Coordinates for 2D plane defined by triangle vertices \(a, b, c \)
- Any point \(p \) in the plane defined by \(a, b, c \) is
 \[
 p = a + \beta (b - a) + \gamma (c - a)
 = (1 - \beta - \gamma) a + \beta b + \gamma c
 \]
- We define \(\alpha = 1 - \beta - \gamma \)
 \[
 => p = \alpha a + \beta b + \gamma c
 \]
- \(\alpha, \beta, \gamma \) are called **barycentric** coordinates
- Works in 2D and in 3D
- If we imagine masses equal to \(\alpha, \beta, \gamma \) attached to the vertices of the triangle, the center of mass (the barycenter) is then \(p \). This is the origin of the term “barycentric” (introduced 1827 by Möbius)
Barycentric coordinates

\[p = a + \beta(b - a) + \gamma(c - a) \]

- \(p \) is inside the triangle if \(0 < \alpha, \beta, \gamma < 1 \)
Barycentric coordinates

- Problem: Given point p, find its barycentric coordinates
- Use equation for implicit lines

$$\beta(p) = \frac{f_{ac}(p)}{f_{ac}(b)}$$

$$\gamma(p) = \frac{f_{ab}(p)}{f_{ab}(c)}$$

$$\alpha = 1 - \beta - \gamma$$

$0 < \beta < 1$

- Division by zero if triangle is degenerate
Barycentric interpolation

- Interpolate values across triangles, e.g., colors

\[c(p) = \alpha(p)c_a + \beta(p)c_b + \gamma(p)c_c \]

- Linear interpolation on triangles
Today

• Viewport transformation
• Barycentric coordinates
• Culling, clipping
• Rasterization
• Visibility
Primitives

Modeling and viewing transformation

Shading

Projection

Scan conversion, visibility

Image

Culling, clipping
- Discard geometry that should not be drawn
Culling

• Discard geometry that does not need to be drawn as early as possible

• Two types of culling:
 - Object-level frustum culling
 • Later in class
 - Triangle culling
 • View frustum culling (clipping): outside view frustum
 • Backface culling: facing “away” from the viewer
 • Degenerate culling: area=0
Backface culling

• Consider triangles as “one-sided”, i.e., only visible from the “front”

• Closed objects
 - If the “back” of the triangle is facing the camera, it is not visible
 - Gain efficiency by not drawing it (culling)
 - Roughly 50% of triangles in a scene are back facing
Backface culling

- Convention: front side means vertices are ordered counterclockwise

- OpenGL allows one- or two-sided triangles
 - One-sided triangles:
 \[\text{glEnable(GL_CULL_FACE)}; \text{glCullFace(GL_BACK)} \]
 - Two-sided triangles (no backface culling):
 \[\text{glDisable(GL_CULL_FACE)} \]
Backface culling

• Compute triangle normal after projection (homogeneous division)

\[\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0) \]

• Third component of \(\mathbf{n} \) negative: front-facing, otherwise back-facing
 - Remember: projection matrix is such that homogeneous division flips sign of third component
Degenerate culling

- Degenerate triangle has no area
 - Vertices lie in a straight line
 - Vertices at the exact same place
 - Normal $n=0$
View frustum culling, clipping

• Triangles that intersect the faces of the view volume
 - Partly on screen, partly off screen
 - Do not rasterize the parts that are off-screen

• Traditional clipping
 - Split triangles that lie partly inside/outside viewing volume before homogeneous division
 - Avoid problems with division by zero

• Modern GPU implementations avoid clipping
Today

- Viewport transformation
- Barycentric coordinates
- Culling, clipping
- Rasterization
- Visibility
Scan conversion and rasterization are synonyms.

One of the main operations performed by GPU.

Draw triangles, lines, points (squares).

Focus on triangles in this lecture.
Rasterization
Rasterization

• How many pixels can a modern graphics processor draw per second?
Rasterization

- How many pixels can a modern graphics processor draw per second?
- Rasterization is „hard-coded“, cannot be modified by the software
- NVidia Geforce 295 GTX
 - Theoretical peak 32 billion pixels per second
 - Multiple of what the fastest CPU could do
Rasterization

- Many different algorithms
- Old style
 - Rasterize edges first
Rasterization

- Many different algorithms
- Old style
 - Rasterize edges first
 - Fill the spans (scan lines, scan conversion)
Rasterization

- Many different algorithms
- Old style
 - Rasterize edges first
 - Fill the spans (scan lines, scan conversion)
 - Requires clipping
 - Not preferred for hardware implementation today
Rasterization

- GPU rasterization today based on “homogeneous rasterization”

 http://www.ece.unm.edu/course/ece595/docs/olano.pdf

- Does not require full clipping, does not perform homogeneous division at vertices

- Today in class
 - Simpler algorithm based on barycentric coordinates
 - Easy to implement
 - Requires clipping
Rasterization

- Given vertices in pixel coordinates

\[
p' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} \quad \text{Pixel coordinates} \quad \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}
\]

- World space
- Camera space
- Clip space
- Image space

\[
p' = DPC^{-1}Mp
\]
Rasterization

• Simple algorithm

compute bbox
clip bbox to screen limits
for all pixels \([x,y]\) in bbox
compute barycentric coordinates alpha, beta, gamma
if \(0<alpha,beta,gamma<1\) //pixel in triangle
\[image[x,y]=triangle\text{Color}\]

• Bounding box clipping trivial
So far, we compute barycentric coordinates of many useless pixels

Improvement?
Rasterization

Hierarchy

- If block of pixels is outside triangle, no need to test individual pixels
- Can have several levels, usually two-level
- Find right granularity and size of blocks for optimal performance
2D Triangle-Rectangle Intersection

• If one of the following tests returns true, the triangle intersects the rectangle:
 - Test if any of the triangle’s vertices are inside the rectangle (e.g., by comparing the x/y coordinates to the min/max x/y coordinates of the rectangle)
 - Test if one of the quad’s vertices is inside the triangle (e.g., using barycentric coordinates)
 - Intersect all edges of the triangle with all edges of the rectangle
Where is the center of a pixel?

• Depends on conventions
• With our viewport transformation:
 - 800 x 600 pixels \Leftrightarrow viewport coordinates are in $[0...800] \times [0...600]$
 - Center of lower left pixel is 0.5, 0.5
 - Center of upper right pixel is 799.5, 599.5
Rasterization

Shared edges

- Each pixel needs to be rasterized exactly once
- Resulting image is independent of drawing order
- Rule: If pixel center exactly touches an edge or vertex
 - Fill pixel only if triangle extends to the right
Today

- Viewport transformation
- Barycentric coordinates
- Culling, clipping
- Rasterization
- Visibility
• At each pixel, we need to determine which triangle is visible
Painter’s algorithm

- Paint from back to front
- Every new pixel always paints over previous pixel in frame buffer
- Need to sort geometry according to depth
- May need to split triangles if they intersect

- Old style, before memory became cheap
Z-buffering

• Store z-value for each pixel

• Depth test
 - During rasterization, compare stored value to new value
 - Update pixel only if new value is smaller

```c
setpixel(int x, int y, color c, float z)
if(z<zbuffer(x,y)) then
  zbuffer(x,y) = z
  color(x,y) = c
```

• z-buffer is dedicated memory reserved for GPU (graphics memory)

• Depth test is performed by GPU
Next Lecture

• Perspectively correct interpolation
• Color spaces