CSE167
Introduction to Computer Graphics

Jürgen Schulze
University of California, San Diego
Fall 2008
Course staff

Instructor
• Jürgen Schulze
• Project Scientist at Calit2

Teaching Assistant
• Robert Thomas
• CSE graduate student
Today

- Course organization
- Course overview
- Linear algebra review
Today

- Course organization
- Course overview
- Linear algebra review
Course organization

Instructor

• Jürgen Schulze (jschulze@ucsd.edu)

Teaching Assistant

• Robert Thomas (r1thomas@cs.ucsd.edu)
Course organization

Lecture

• Tue/Thur, 2:00pm-3:20pm, WLH 2209

Lab hours

• Wed 2pm-5pm
• Fri 1pm-4pm
• Additional hours TBD
Course organization

Class web page

- http://graphics.ucsd.edu/twiki/bin/view.pl/Classes/CSE167Fall2008

- Schedule, slides, reading, project descriptions, etc.
Course organization

Webboard

- Go to http://webboard.ucsd.edu/ and select CSE167
- User name: network user name (email)
- Password: PID
Textbooks

• Fundamentals of Computer Graphics, Peter Shirley, 2nd edition (required)

• OpenGL Programming Guide, Shreiner, Woo, Neider, Davis, 5th edition (recommended)
Programming Projects

• Assignments and schedule on class webpage

• Base code (for Windows platform) and documentation on class webpage

• Use EBU3B 2xx labs or your own PC

• Individual assistance by TA during lab hours

• Turn in by demonstration to TA during lab hours
Programming Projects

Build your own 3D rendering engine

• **Project 1:** Matrices, Vectors, and Coordinate Transformations
• **Project 2:** Interactive Viewing
• **Project 3:** Rasterization
• **Project 4:** Lighting and Texturing
• **Project 5:** Scene Graphs
• **Project 6:** Shader Programming
• **Final Project**
Tests

Midterm
• In class
• Thu 10/30

Final
• Thu 12/11, 3:00pm-5:59pm
Grading

• Project 1-6: 10% each
• Final project: 15%
• Midterm: 10%
• Final exam: 15%
• Late policy for projects:
 75% of original grade if you present your project the following week
Prerequisites

Basic familiarity with

- Linear algebra
- C++ (if you know Java you’ll be able to adapt)
- Object oriented programming
Questions?
Today

• Course organization
• Course overview
• Linear algebra review
What is computer graphics?

Applications
What is computer graphics

Applications

- Movie, TV special effects
- Video games
- Scientific visualization
- GIS (Geographic Information Systems)
- Medical visualization
- Industrial design
- Simulation
- Communication
- Etc.
What is computer graphics?

- Rendering
- Modeling
- Animation
Rendering

- Synthesis of a 2D image from a 3D scene description
 - Rendering algorithm interprets data structures that represent the scene in terms of geometric primitives, textures, and lights
- 2D image is an array of pixels
 - Red, green, blue values for each pixel
- Different objectives
 - Photorealistic
 - Interactive
 - Artistic
Photorealistic rendering

- Physically-based simulation of light, camera
- Shadows, realistic illumination, multiple light bounces
- Slow, minutes to hours per image
- Special effects, movies
- CSE168: Rendering Algorithms
Photorealistic rendering
Interactive rendering

- Produce images within milliseconds
- Using specialized hardware, graphics processing units (GPUs)
- Standardized APIs (OpenGL, DirectX)
- Often “as photorealistic as possible”
- Hard shadows, fake soft shadows, only single bounce of light

- Games
- CSE167
Interactive rendering
Artistic rendering

- Stylized
- Artwork, illustrations, data visualization
Artistic rendering
Modeling

- Creating 3D geometric data
 - The “model” or the “scene”
- By hand
 - Autodesk (Maya, AutoCAD), LightWave 3D, ...
- Free software
 - Blender
- Not as easy to use as Notepad...

Maya Screenshot
Modeling

• Basic 3D models consist of array of triangles
• Each triangle stores 3 vertices
• Each vertex contains
 - xyz position
 - Color
 - Etc.
Modeling

- Procedural: by writing programs
- Scanning real-world objects
Modeling

Procedural tree

Procedural city

Scanned statue
Animation

- Deforming or editing the data
- Change over time
- Faces, articulated characters, ...
- CSE169: Computer Animation
Animation
In this class

The Basics...

- Rendering 3D models
 - Camera simulation
 - Interactive viewing
 - Lighting, shading

- Modeling
 - Triangle meshes
 - Smooth surfaces

- Experience with linear algebra, C++, OpenGL

- Background for advanced topics (CSE168, CSE169)
Questions?
Today

- Course organization
- Course overview
- Linear algebra review
Linear algebra review

Why linear algebra?

• Need to describe 3D scenes
 - Position, orientation, motion of objects
 - Relation of objects to virtual camera
 - Projection of scene onto image plane

• Linear algebra provides mathematical tools
Topics today

• Vectors
• Coordinate systems
• Vector arithmetic
• Vector magnitude
• Dot product
Vectors

- Direction and length in 3D
- Vectors can describe
 - Difference between two 3D points
 - Speed of an object
- Vectors are in bold-face
Vectors

Multiplication by scalar

\[a \]

\[0.5a \]

\[-1a = -a \]
Vectors

Addition

\[\mathbf{a} \]

\[\mathbf{b} \]

\[\mathbf{a} + \mathbf{b} \]
Vectors

Addition

\[a \]
\[b \]
\[a + b \]
\[a - b \]
Vectors

Linear combination

\[sa + tb, \quad s, t \in \mathbb{R} \]

\[\sum_{i=1}^{n} s_i a_i \quad s_i \in \mathbb{R} \]
Vectors

Linear combination

\[sa + tb, \quad s, t \in \mathbb{R} \]
\[\sum_{i=1}^{n} s_i \mathbf{a}_i \quad s_i \in \mathbb{R} \]

Linearly dependent vectors

- A set of vectors \(\mathbf{a}_i, i = 1 \ldots n \) is linearly dependent if there exist scalars \(s_i \) such that

\[\mathbf{a}_j = \sum_{i=1, i \neq j}^{n} s_i \mathbf{a}_i \]

- Otherwise, they are linearly independent
Coordinate systems

- Describe any vector with respect to three basis vectors x, y, z

\[\mathbf{a} = a_x \mathbf{x} + a_y \mathbf{y} + a_z \mathbf{z} \]

- The basis vectors form a coordinate system
Coordinate systems

• Any three vectors that are linearly independent could be used as a basis
 - Different lengths
 - Not perpendicular to each other
Coordinate systems

- Any three vectors that are linearly independent could be used as a basis
 - Different lengths
 - Not perpendicular to each other
- Why linearly independent?
- Why exactly three vectors?
- Other coordinate systems?
Coordinate systems

Euclidean coordinate systems

• Basis vectors
 - Have unit length
 - Are perpendicular to each other

• Orthonormal
Coordinate Systems

Handedness

Right handed

Left handed
Vector arithmetic using coordinates

\[\mathbf{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \]

\[\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_x + b_x \\ a_y + b_y \\ a_z + b_z \end{bmatrix} \quad \mathbf{a} - \mathbf{b} = \begin{bmatrix} a_x - b_x \\ a_y - b_y \\ a_z - b_z \end{bmatrix} \]

\[-\mathbf{a} = \begin{bmatrix} -a_x \\ -a_y \\ -a_z \end{bmatrix} \quad s\mathbf{a} = \begin{bmatrix} sa_x \\ sa_y \\ sa_z \end{bmatrix} \]
Questions?
Vector Magnitude

- The magnitude (length) of a vector is:
 \[|\mathbf{v}|^2 = v_x^2 + v_y^2 + v_z^2 \]
 \[|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} \]

- A vector with length=1.0 is called a unit vector.

- We can also normalize a vector to make it a unit vector.
 \[\frac{\mathbf{v}}{|\mathbf{v}|} \]

- Unit vectors are often used as surface normals.
Dot Product

• The dot product is a scalar value that tells us something about the relationship between two vectors

• Angles between vectors

• Lengths of vectors
Dot product

- If $a \cdot b > 0$ then $\theta < 90^\circ$
 - Vectors point in the same general direction
- If $a \cdot b < 0$ then $\theta > 90^\circ$
 - Vectors point in opposite direction
- If $a \cdot b = 0$ then $\theta = 90^\circ$
 - Vectors are perpendicular
 - (or one or both vectors are degenerate (0,0,0))
Dot Product

- Using coordinates

\[\mathbf{a} \cdot \mathbf{b} = \sum a_i b_i \]
\[\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z \]

\[\mathbf{a} \cdot \mathbf{b} = |a||b| \cos \theta \]
Next class

• Matrices and transformations
• Lab next Wed and Fri: introduction to the base code
 - If you can’t find Robert, make sure to check in all labs EBU3B 2xx