Overview
Surface parameterization
- Introduction
- Parameterization as a graph embedding problem [Floater 97]
- Distortion minimizing parameterization using linear methods [Desbrun 02]
- Angle based flattening [Sheffer 05]

Introduction
- Given a 3D mesh, find mapping to 2D mesh, with one-to-one correspondence between triangles
 - Flatten mesh, embed mesh in 2D
 - Mapping is piecewise linear

Applications
- Texturing
- Remeshing
- Geometry images
 - Uniform remeshing in parameter domain

Applications
- Smooth surface fitting
Desired features

- One-to-one (bijectivity)
 - No overlaps, fold-overs
- Preservation of intrinsic geometry ("distortion minimization")
 - Angles
 - Arc lengths
 - Area
- Efficient computation
 - Linear least squares optimization preferred over non-linear optimization

Overview

- Introduction
- Parameterization as a graph embedding problem [Floater 97]
- Distortion minimizing parameterization using linear methods [Desbrun 02]
- Angle based flattening [Sheffer 05]

Graph embedding

- Meshes are graphs
 - Vertices are nodes
 - Edges are arcs
 - Embedded in 3D
- Restrict ourselves to meshes with one boundary
 - No holes, disc topology
- These meshes are planar graphs
 - Can be embedded in a 2D plane such that
 - Each vertex is mapped to some point in 2D
 - Each edge connects its two vertices
 - There are no intersection of edges (except at vertices)
 - Embedding is called a plane graph

Examples

- Note: boundary of embedding is user specified

Discussion

Advantages
- Guarantees no self intersections, bijectivity
- Fast

Disadvantages
- Requires user specified boundary
- Based purely on mesh/graph connectivity
 - Does not take into account geometry
 - Does not attempt to preserve angles, arc lengths, areas
 - May lead to large distortions
Overview
- Introduction
- Parameterization as a graph embedding problem [Floater 97]
- Distortion minimizing parameterization using linear methods [Desbrun 02]
- Angle based flattening [Sheffer 05]

Distortion minimization
- Attempt to preserve angles, areas
- Discrete conformal parameterization
 - Angle preserving
- Discrete authalic parameterization
 - Area preserving

DCP
- Discrete conformal parameterization

Near optimal parameterizations

Discussion
Advantages
- Fast, linear problem
- Minimize discrete angle, area distortion

Disadvantages
- Linear weights may be negative
- May lead to overlap

Overview
- Introduction
- Parameterization as a graph embedding problem [Floater 97]
- Distortion minimizing parameterization using linear methods [Desbrun 02]
- Angle based flattening [Sheffer 05]
Angle based flattening

- Observation: angles define 2D triangulation up to rigid transformation and uniform scaling
- Idea: two step procedure
 - Determine angles (optimization)
 - Convert to 2D coordinates (reconstruction)
- Optimization directly measures distortion of angles in triangles

Energy function

\[E(\alpha) = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{1}{w_{ij}} (a_{ij} - B_{ij})^2 \]

Constraints

- Triangle validity
 \[\forall v \in T, \quad C_{\text{tri}}(v) = a_{ij} + a_{ji} + a_{jk} - \pi = 0 \]
- Planarity
 \[\forall v \in V_{\text{tri}}, \quad C_{\text{pl}}(v) = \sum_{(i,j,k) \in v} a_{ij} - 2\pi = 0 \]
- Reconstruction: edges shared by neighboring triangles have same length

Optimization procedure

- Challenging, since constraints are non-linear
- Details in the paper
 - Sequential linearly constrained programming
 - Hierarchy
- Advantage: guarantees that there are no flips

Texture atlases

- So far, discussed parameterization of disc-like objects
- Generalization to arbitrary objects using segmentation into patches
 - Patches form an atlas: are non overlapping and cover the object completely
 - Each patch is disc-like
 - Parameterize each patch separately

Segmentation

- Feature detection
- Region growing

Examples

- Patch parameterization using variant of DCP

[Levy 02]
Next time

- Registration