Differential geometry of surfaces
Review
- Gauss map, shape operator
- Second fundamental form
Today
- Curvatures
 - Principal, mean, Gaussian curvature
- Minimal surfaces
- Mean curvature normal
- Isometric, conformal maps
- Gauss theorem

Gauss map $N(p)$

Differential of Gauss map
$$dN_p(v) = N'(0)$$

Second fundamental form
- Defined as the quadratic form \mathbf{II}_p in $T_p(S)$ by
 $$\mathbf{II}_p(v) = -\langle dN_p(v), v \rangle$$

Second fundamental form
- Curvature of normal section at p, given by normal $N(p)$ and tangent v
Principal curvatures

Properties

• The principal directions are the eigenvectors of the differential of the Gauss map
 \[dN_p(e_1) = -k_1 e_1, dN_p(e_2) = -k_2 e_2 \]

• The principal directions form an orthonormal basis for \(T_p(S) \)

Questions?

Principal directions

• Direction of maximum curvature

Direction of maximum curvature

[Diweald, Rumpf]

• Which one is minimum/maximum?

Direction of minimum curvature

[Diweald, Rumpf]
Euler formula

- The second fundamental form expressed in the basis e_1, e_2
- For a unit vector $v = e_1 \cos \theta + e_2 \sin \theta$

\[\Pi_p(v) = k_1 \cos^2 \theta + k_2 \sin^2 \theta \]

Gaussian and mean curvature

Gaussian curvature K

The determinant of dN_p

Mean curvature H

Half the negative of the trace of dN_p

In terms of principal curvatures

\[K = k_1 k_2, \quad H = \frac{k_1 + k_2}{2} \]

Mean curvature visualization

A point on the surface is

- **Elliptic** if $\det(dN_p) > 0$, i.e., $k_1 k_2 > 0$
- **Hyperbolic** if $\det(dN_p) < 0$, i.e., $k_1 k_2 < 0$
- **Parabolic** if $\det(dN_p) = 0, dN_p \neq 0$, i.e., $k_1 = 0$ or $k_2 = 0$
- **Planar** if $dN_p = 0$, i.e., $k_1 = k_2 = 0$
- **Umbilical** if $k_1 = k_2$

Questions?

- Express second fundamental form using a local parameterization

\[x : U \subset \mathbb{R}^2 \rightarrow S \]

\[x(u, v) = p \in S \]

- Basis for tangent space x_u, x_v
 Tangent vectors $x_u u' + x_v v'$
- What is $\Pi_p(u', v'), dN_p(u', v')$?
In local coordinates

- Given curve $\alpha(t) = x(u(t), v(t))$ with $\alpha' = xu' + xv'$ at p
- Per definition $dN(\alpha') = N'(u(t), v(t)) = Nu' + Nv'$

In local coordinates

- Note $\langle N, xu \rangle = \langle N, xv \rangle = 0$
- Therefore

 $e = -(N_u, xu) = \langle N, x_{uu} \rangle$
 $f = -(N_u, xu) = \langle N, x_{uv} \rangle = -(N_u, x_v)$
 $g = -(N_u, xu) = \langle N, x_{vv} \rangle$

- We don’t need the terms Nu, Nv!

Weingarten equations

- With coefficients E, F, G of first fundamental form

 $a_{11} = \frac{1F - eG}{EG - F^2}$
 $a_{12} = \frac{2G - 1F}{EG - F^2}$
 $a_{21} = \frac{eF - fG}{EG - F^2}$
 $a_{22} = \frac{1F - gG}{EG - F^2}$

Weingarten equations

- Because $N_u, N_v \in T_p(S)$ we can write

 $N_u = a_{11}x_u + a_{21}x_v$
 $N_v = a_{12}x_u + a_{22}x_v$

 and dN in the basis x_u, x_v

 $dN \begin{pmatrix} u' \\ v' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}$

- The coefficients a_{11}, a_{21}, a_{22} express the differential of the Gauss map in the basis x_u, x_v of $T_p(S)$

Curvatures

Remember

Curvatures are defined in terms of the differential of the Gauss map

- Gaussian curvature: determinant of dN

 $K = \det(a_{ij}) = \frac{eg - f^2}{EG - F^2}$

- Mean curvature: negative half of trace of dN
- Principal curvatures: eigenvalues of dN
Outlook

- Theory of smooth surfaces
 - Parameterization
 - Differentiability
- In practice
 - Triangle meshes prevailing

Next time

- Surface representations