Mesh-Based Inverse Kinematics

Robert W. Sumner Matthias Zwicker Craig Gotsman Jovan Popović

CSE291 Presentation by Chih Liang

What is MeshIK?
Given a number of example meshes (or poses), MeshIK computes a new mesh with the fixed vertices as contraints.

Feature Vector
- Represent each example using feature vector
- Feature vector consists of deformation gradients
- Deformation gradients describe deformation of each triangle
- Transformation of a triangle relative to a reference triangle

Deformation Gradient
Affine Transformation for j-th triangle:
\[\Phi_j(p) = T_j p + t_j \]
Deformation Gradient is Jacobi matrix:
\[D_{pT_j(p)} = T_j \]
3x3 matrix \(T_j \) contains rotation, scaling, and skewing components

Solving for Transformation
\(T_j \) is not unique for a triangle, a fourth vertex is added:
\[v_4 = v_1 \pm \frac{(v_2 - v_1) \times (v_3 - v_1)}{\sqrt{(v_2 - v_1) \times (v_2 - v_1)}} \]
From the affine transformation of all 4 vertices,
\[\begin{align*}
 v_1 - T_1 t_j &= v_1 - T_2 t_j \\
 v_1 - T_3 t_j &= v_1 - T_4 t_j
\end{align*} \]
Subtract each from last equation & solve for \(T_j \)
\[T_j = (v_1 - v_4, v_2 - v_4, v_3 - v_4) [v_1 - v_4, v_2 - v_4, v_3 - v_4]^{-1} \]
where bar means reference

Feature vector of a deformed mesh
\[f = G x \]
\[x = (x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n) \]
That means, \(G = 9m \times 3n \) sparse matrix

\[M = \# \text{ of triangles} \]
\[N = \# \text{ of vertices} \]
Linear operator G example

\[\begin{bmatrix}
 a_{10} & a_{11} & a_{12} \\
 a_{20} & a_{21} & a_{22} \\
 a_{30} & a_{31} & a_{32}
\end{bmatrix}
\]

For \(j \)-th triangle, let

\[\begin{bmatrix}
 v_x \ v_y \ v_z \ v_x \ v_y \ v_z \\
 v_x \ v_y \ v_z \ v_x \ v_y \ v_z \\
 v_x \ v_y \ v_z \ v_x \ v_y \ v_z
\end{bmatrix}
\]

Finding a mesh given a feature vector

\[\mathbf{x} = \arg \min_{\mathbf{x}} \| \mathbf{Gx} - (\mathbf{f} + \mathbf{c}) \| \]

- \(\mathbf{G} \) is void of columns that multiply the fixed vertices
- \(\mathbf{c} \) is the result of this multiplication
- \(\mathbf{x} \) is void of the fixed vertices

Feature space

- Combine feature vectors of examples to generate new shapes
- \(\mathbf{w} = \) weights
- \(\mathbf{f}_1, \ldots, \mathbf{f}_n = \) feature vectors of examples

Linear vs Nonlinear feature space

Linear feature space

\[\mathbf{M}(\mathbf{w}, \mathbf{f}_1, \ldots, \mathbf{f}_n) = \mathbf{Mw} \]

doesn’t handle rotations correctly

Quaternions, a nonlinear interpolation, can handle only 2 rotations.

Nonlinear Feature Space

- Defines the space of desirable deformations.
- Polar decomposition and matrix exponential map.
Polar Decomposition

Decompose the deformation gradient T_{ij} for the j-th triangle in the i-th pose:

$$T_{ij} = R_{ij} S_{ij}$$

- R is the rotation component
- S is the scale/shear component

Exponential Map

Nonlinear blend for deformation gradient of the j-th triangle for all example poses:

$$T_j = \exp\left\{ \sum_{i=1}^l w_i \log(R_{ij}) \right\} \cdot \sum_{i=1}^l w_i S_{ij}$$

- Rotations: matrix exponential and log functions
- Scale/Shear: linear combinations

Nonlinear Least-Squares

$$x^*, w^* = \arg\min_{x, w} \|Gx - (M(w) + c)\|$$

Solve simultaneously for x and w

- c = user constraints
- $M(w)$ = feature vector from nonlinear blend
- Gx = feature vector of deformed mesh

Gauss-Newton Example

$$x^* = \arg\min_x \|x^2\|$$

$$x_1 = \arg\min_\delta \| (x_1 + \delta)^2 \|$$

$$x_1 = \arg\min_\delta \| x_1 + 2x_1 \delta \|$$

$$\implies x_1 = \frac{x_1}{2}$$

Gauss-Newton Algorithm

$$x^*, w^* = \arg\min_{x, w} \|Gx - (M(w) + c)\|$$

- Linearize nonlinear function w/
- Result

$$x_{k+1} = x_k - \arg\min_{x} \|Gx - (M(w_k + \delta x_k) + c)\|$$

$$= \arg\min_{x} \|Gx - D_x M(w_k + \delta x_k) - (M(w_k) + c)\|$$

m is the number of triangles.
Each triangle has T, which has 9 entries specified by row and column indices.
Gauss-Newton Iteration

\[\delta_k x_{k+1} = \arg \min_{\delta x} \| Gx - D_k M(w_k) \delta - (M(w_k) + c) \| \]

\[\Rightarrow A^T A \begin{bmatrix} x \\ \delta \end{bmatrix} = A^T (M(w_k) + c) \]

- Each iteration, update \[w_{k+1} = w_k + \delta_k \]
- Until \[\| \delta_k \| < \sqrt{\epsilon}/\| w_k \| \]

Cholesky Factorization

- Make \[A^T A = U^T U \]
- \[U = \text{upper-triangular matrix} \]
- Cholesky way to solve for \[U^T U X = B \]
 1. Solve for \[Y \] in \[U^T Y = B \]
 2. Solve for \[X \] in \[UX = Y \]
- \[\text{[triangular matrix]}^{-1} = \text{[triangular matrix]} \]
 (can compute easily)

Pros & Cons of MeshIK

- A small of work from user to displace vertices
- Mesh deformations are meaningful
- Can specify weights independently to blend the poses
- Must provide example meshes
- Slow due to convergence
- Requires same connectivity structure for all meshes

Demo Video