Linear Rotation-invariant Coordinates for Meshes
Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or
SIGGRAPH 2005

Presenter: Wan-Yen Lo

Introduction
• Interactive mesh editing
 - Intuitive user interface
 - Deformation must be smooth and intuitive
 - Preservation of surface details
• Previous approaches
 - Multiresolution
 - Local frames
Problem—the surface representations are not rotation invariant!

Introduction
Editing with non rotation-invariant coordinates

Introduction
Laplacian editing
Linear rotation-invariant coordinates

Introduction
• A rigid motion-invariant mesh representation
 - Describe surface by local properties
 - Allow interactively editing the mesh while preserving the local surface details

Outline
• Mesh representations
 - Discrete forms
 - Discrete surface equations
• Mesh editing
• Results
• Discussion
Mesh Representation

- Representing the mesh with first and second discrete forms, which are
 - Invariant to rotation and translation
 - Containing enough information to reconstruct the mesh uniquely

Discrete Forms

- First and second discrete forms
 - \(\mathcal{F}(\cdot) : \cup_{i=1}^{N} \Delta_i \rightarrow R \)
 - \(\mathcal{F}^i(\cdot) : \cup_{i=1}^{N} \Delta_i \rightarrow R \)

The First Discrete Form

- Parameterization
 \(\mu = \mu_i x_i + \mu_N x_{N+1} \in \Delta_i \)
 \(\mathcal{F}(\mu) = (\mu, \mu)_{\mathbb{R}^2} \)
 \(= (\mu_i x_i + \mu_N x_{N+1}, \mu_i x_i + \mu_N x_{N+1})_{\mathbb{R}^2} \)
 \(= \mu_i (\tilde{x}_i, N_i)_{\mathbb{R}^2} \)
 \(+ \mu_N (\tilde{x}_N, N_N)_{\mathbb{R}^2} \)
 \(O_L := \text{sign} \left(\text{det} (\tilde{x}_i, \tilde{x}_{i+1}, N_i) \right) \)

The Second Discrete Form

- Parameterization
 \(\mu = \mu_i x_i + \mu_N x_{N+1} \in \Delta_i \)
 \(\mathcal{F}(\mu) := \mu_i (\tilde{x}_i, N_i)_{\mathbb{R}^2} + \mu_N (\tilde{x}_{N+1}, N_N)_{\mathbb{R}^2} \)
 \(= \mu_i \tilde{x}_i + \mu_N \tilde{x}_{N+1} \)
 \(\tilde{L}_i = (\tilde{x}_i, N_i)_{\mathbb{R}^2} \)
 Meaning: height function of the 1-ring neighborhood above the tangent planes

Summary of Discrete Forms

- 1st: length
- 2nd: angle
- 3rd: orientation
- 4th: height function
Local Reconstruction

- Given the discrete form coefficients at vertex \(i \), the 1-ring neighborhood of \(i \) is defined up to a rigid transformation

\[
\tilde{x}_i = \tilde{x}_i^N + O(V) \tilde{b}_{i_1} + \bar{L}_i N^i
\]

Outline

- Mesh representations
 - Discrete forms
 - Discrete surface equations
- Mesh editing
- Results
- Discussion

Discrete Surface Equations

- Discrete frame
 \((\tilde{x}_i^B, \tilde{x}_i^N, \tilde{N}^i)\)

- Discrete surface equations
 - Encode the difference between adjacent discrete frames

\[
\begin{align*}
\tilde{x}_i^B &= \left(\Gamma_{B_i} + 1\right) \tilde{x}_i^B + \Gamma_{B_i} \tilde{b}_{i_1} + A_{B_i} \tilde{N}^i \\
\tilde{x}_i^N &= \left(\Gamma_{N_i} + 1\right) \tilde{x}_i^N + \Gamma_{N_i} \tilde{b}_{i_1} + A_{N_i} \tilde{N}^i \\
\tilde{N}^i &= \Gamma_{N_i} \tilde{N}^i + \Gamma_{N_i} \tilde{b}_{i_1} + A_{N_i} \tilde{N}^i
\end{align*}
\]

Discrete Surface Equations

- The coefficients in the discrete surface equations are functions of the discrete forms
 - why?
 - The equations express one frame in terms of an adjacent frame
 - Local frame at on vertex has information about neighbors

Global Reconstruction

- The set of equations forms a over-determined sparse linear system

\[
\forall (i, j) \in E
\begin{align*}
\tilde{x}_i - \tilde{x}_j &= \tilde{x}_i^B + \tilde{L}_i N^i = (\tilde{x}_i^B, \tilde{x}_i^N, \tilde{N}^i) \\
\tilde{x}_j &= (\tilde{x}_i^B, \tilde{x}_i^N, \tilde{N}^i)
\end{align*}
\]

\(3|V| \) variables, \(3|2E| \) equations

- Solve the system in the least square sense!

Global Reconstruction

- Geometry difference equations

\[
\forall (i, j) \in E
\begin{align*}
\tilde{x}_i - \tilde{x}_j &= \tilde{x}_i^B + \tilde{L}_i N^i = (\tilde{x}_i^B, \tilde{x}_i^N, \tilde{N}^i) \\
\tilde{x}_j &= (\tilde{x}_i^B, \tilde{x}_i^N, \tilde{N}^i)
\end{align*}
\]

- Solve the linear system in the least square sense to get the positions of vertices
Put it all together

• Reconstruct the mesh given discrete coefficients, an initial discrete frame and a position of one vertex

Outline

• Mesh representations
 • Discrete forms
 • Discrete surface equations
• Mesh editing
• Results
• Discussion

Mesh Editing

• The editing operation is applied by adding linear constraints on the linear systems

Mesh Editing

• Users need to define a ROI and handle when editing the mesh

Outline

• Mesh representations
 • Discrete forms
 • Discrete surface equations
• Mesh editing
• Results
• Discussion

More Results

The discrete forms are not scale- or shear-invariant
• Shape interpolation
 - Linear interpolation between discrete forms
 - Two meshes with identical connectivity and different geometries

• Connection with differential geometry
 - First fundamental form
 \[
 (x_0, x_0)_t = \frac{1}{E(u^t)^2 + 2F(v^t) + G(u^t)^2}
 \]
 - Second fundamental form
 \[
 e = -(N_1, x_0) = (N, x_m),
 f = -(N_1, x_0) = (N, x_m) = -(N, x_m),
 g = -(N_1, x_0) = (N, x_m),
 \]

• Thanks for your attention!