CSE291
Topics in Computer Graphics
Mesh Animation

Matthias Zwicker
University of California, San Diego
Fall 2006

Overview
- Introductions
- Course organization
- Course format
- Syllabus

Questions?

Course format
- First 2 weeks
 - Lectures on background material
- Week 3 to 10
 - Paper presentation and discussion sessions
 - Class project

Organization
- Class sessions
 Tuesdays, Thursdays, 9 30am - 10 50am,
 MCGIL 2342
- Office hours
 Mondays, 2pm - 4pm, EBU3B 4114

Organization
- Course webpage
 http://graphics.ucsd.edu/courses/cse291_f06/
- Mailing list
 cse291@graphics.ucsd.edu
Class sessions
- Summary of last session, instructor, 10 min.
- Paper presentation, class participant, 45 min.
- Discussion, class participant, 25 min.

Paper presentations
- Pick a topic from the reading list http://graphics.ucsd.edu/courses/cse291_f06/
- Choose *one* paper
- Present in class
- Deadline for choosing topic/paper September 28

Lead discussion
- Prepare questions
- Lead discussion
- Assigned by instructor

Class participation
- Read paper for each session
- Show up in class
- Participate in discussions

Class project
- Pick an area of your interest
- Implement a paper
- Modify, experiment
- Discuss progress with instructor
- Project proposal by October 5
- Project presentations November 30

Questions?
Credits
- 2 units
 - Class participation
 - Paper presentation/discussion
- 4 units
 - Class project
 - Need to take for 4 units to use towards credit requirements

Grading
- 4 units
 - 25% class participation
 - 25% paper presentation
 - 50% class project
- 2 units
 - 50% class participation
 - 50% paper presentation

Questions?

Syllabus
- Background material
- Overview of readings

Background material
- Differential geometry
- Non-linear optimization
- Rotations
- Numerical solution of PDEs using finite element methods

Overview of readings
http://graphics.ucsd.edu/courses/cse291_f06/
Multiresolution editing

Goal: efficient editing of detailed meshes
- Multiresolution mesh representation
- High resolution mesh is sum of coarse mesh and details
- Edit coarse mesh, automatically add detail back in
- No need to manually edit every vertex at high resolution

[Kobbelt et al.]

Advanced skinning

Goal: compute character skin (surface) based on skeleton
- Basic approach: linear blending of vertices attached to bones
- Fast, but hard to make look good for all character poses

[Zorin et al.]

Advanced skinning

Goal: intuitive editing of detailed meshes without multiresolution representation
- Use derivatives instead of absolute vertex positions
- Editing is done by setting boundary conditions
- Mesh reconstruction involves solution of system of equations
- Two sessions

EigenSkin: Real Time Large Deformation Character Skinning in Hardware

Paul G. Kry
Doug L. James
Dinesh K. Pai
University of British Columbia
Shape deformation using diff. coords.

Subspace Gradient Domain
Mesh Deformation
papers_0271

Animation from examples

Goal: use examples to guide mesh animation
- Set of example shapes as input
- Examples shapes guide interactive animation
- Based on inverse kinematics techniques

Animation from examples

Inverse Kinematics for Reduced Deformable Models
Kevin G. Der
Robert W. Sumner
Jovan Popović

Data-driven bodies and faces

Goal: model and animate human faces and bodies based on data acquired from real people
- Scan 3D shape of real people
- Use statistical techniques to build a parametric model
- Generate new shapes by specifying parameters
- Two sessions

Data-driven bodies and faces

The space of human body shapes: reconstruction and parameterization from range scans
Beert Allen
Brian Curless
Zoran Popović
<table>
<thead>
<tr>
<th>Pseudo physics</th>
<th>Physics-based methods</th>
</tr>
</thead>
</table>
| **Goal:** interactive, physically plausible simulation of dynamically deforming shapes
 • Geometric hacks to make it look good
 • Extremely fast
 • Video | **Goal:** interactive dynamic simulation of elastic bodies
 • Based on physical models, generalized springs
 • More realistic than pseudo physics approaches
 • Interactive rates |

<table>
<thead>
<tr>
<th>Physics-based methods</th>
<th>Thin shells and cloth</th>
</tr>
</thead>
</table>
| ![Image](Irving.png) | **Goal:** physical simulation of thin shells and cloth
 • Based on physical models |

<table>
<thead>
<tr>
<th>Thin shells and cloth</th>
<th>Model reduction</th>
</tr>
</thead>
</table>
| ![Image](Greenspun.png) | **Goal:** accelerate physical simulations by reducing the dimensionality of the problem
 • “Factor out” the most important deformation modes
 • Solve reduced problems |
<table>
<thead>
<tr>
<th>Plasticity and fracturing</th>
<th>Meshless methods</th>
</tr>
</thead>
</table>
| **Goal:** physical simulation of plastic deformation, fracturing
 - Video | **Goal:** physical simulation of solids and fluids without using meshes
 - Simulate solids and fluids in unified framework |

<table>
<thead>
<tr>
<th>Questions?</th>
<th>Next time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Differential geometry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meshless methods</th>
<th>Deadlines</th>
</tr>
</thead>
</table>
| ![Point Based Animation of Elastic, Plastic and Melting Objects](image) | - September 28: presentation topic and paper
 http://graphics.ucsd.edu/courses/cse291_f06/
- October 5: class project proposal |