Procedural Texturing

Steve Rotenberg
CSE168: Rendering Algorithms
UCSD, Spring 2014
Procedural Texturing

• Procedural texturing is the process of generating texture data algorithmically at render time, rather than getting texture data from a previously stored image
• This allows texture maps to be defined as procedural functions
• This is nice for things like organic, bumpy, irregular surfaces that can be defined by non-repeating functions
• This reduces visual tiling artifacts that can be visible when texture maps are repeated over and over
• Procedural texturing also allows for effectively unlimited resolution, as details are described by mathematical functions rather than pixels of a fixed size
Solid Textures

- It is also possible to use volumetric or solid textures.
- Instead of a 2D image representing a colored surface, a solid texture represents the coloring of a 3D space.
- Solid textures are often procedural, because they would require a lot of memory to explicitly store a 3D bitmap.
- A common example of solid texture is marble or granite. These can be described by various mathematical functions that take a position in space and return a color.
- Texturing a model with a marble solid texture can achieve a similar effect to having carved the model out of a solid piece of marble.
Procedural Texturing

• Procedural texturing is used throughout the movie industry and a lot of production time goes into writing procedural shaders for specific effects.

• Procedural functions are used to generate colors, displacements, volumes, or can affect any other visual property or BRDF attribute.

• There is no limit to the functions that could be used to generate the desired effects, but there are some standard functions and common approaches used across a variety of different tools and renderers.
Basic Operations

• There are several basic features of a procedural texture function
• In general, they take a 2D or 3D texture coordinate as input and produce a vector of values as output (typically a color, displacement, etc.)
• Some common tools include:
 – Grids, bricks, etc.
 – Color ramps
 – Lerp, spline, & smooth step functions
 – BRDF selection & blending
Procedural Shaders
Noise
Noise

• Many procedural textures are built up from *noise* functions
• A *noise* function is an n-dimensional function that generates a random pattern with some adjustable properties
• There are many popular noise functions that generate different patterns, but generally, noise functions are designed to generate variation at a specific spatial frequency
Noise Functions

• There are many popular methods for implementing noise functions.
• Many of them are based on starting with some lattice of random numbers.
• *Value noise* uses a lattice of random values that represent the value of the noise field at the lattice points, and then uses cubic interpolation to determine the value in between the lattice points.
• *Gradient noise* uses values of zero at the lattice points combined with random gradient vectors, and is sometimes combined with value noise.
• *Fourier synthesis* adds up several sine waves of varying amplitudes, frequencies, and phase shifts.
• *Sparse convolution* is not a lattice method, and instead uses a Poisson distribution of filter functions. It is a more expensive technique that avoids the XY gridding artifacts of many other noise techniques.
Perlin Noise

• Ken Perlin introduced the concept of procedural noise to the computer graphics community in 1985, and showed a wide variety of applications

• Modern variations of the classic Perlin noise are still popular today and are included in most 3D rendering tools
Turbulence

• *Turbulence* is a general concept that refers to combining multiple noise patterns at different frequencies
• This gives variation over a range of scales
• Typically, turbulence is a sum of N noise functions, where each function is roughly half the amplitude and twice the frequency of the previous function

Noise

Turbulence
Using Noise
Displacement Noise

• Noise (and other procedural techniques) are also very useful for displacement maps and terrain generation as well
3D Noise

- 3D noise functions can be used to model solid or gaseous volumes
Noise Animation

• If we use a 2D plane moving through a 3D noise function, we can generate animated effects such as fire
• It is also possible to use a 3D sub-volume of a 4D noise field to animate 3D fire
Worley Noise

• Another popular choice is the *Worley noise* function

• This one generates a cellular pattern that can be applied to a variety of applications
Shader Editors

- Many rendering systems (Maya, 3D Studio, etc.) have interactive editors that allow artists to create procedural shaders by connecting up components from a set of data flow tools