Today's Menu

- Fractal landscapes
- Noise
- Turbulence (fractal noise)
- Cellular noise
- More texture mapping
Fractal Landscapes

Ken Musgrave

- Stochastic midpoint subdivision
- "Fractal"

Noise

- Ken Perlin 1984

Noise Example

Encoded shading variation. Here $R_d = f(y)$.

Constant color

$R_d = f(y) + \text{noise}(x, y, z)$
Noise Example

\[R_d = f(y) + \text{more noise}(x, y, z) \]

Noise Example

\[R_d = f(y) + \text{noise}(x, y, z) \]

Noise

- What is it?
- How is it computed?

Noise

- Bandlimited
- Translation invariant
- Rotation invariant
- Not scale invariant

Random Noise

Not bandlimited, white noise

Noise

- Interpolating random numbers on a grid
Noise:

- Create random vectors on a grid
- Use 3D-Hermite interpolation to generate a noise value
Noise: Scale

![Graph showing amplitude vs wavelength and frequency vs wavelength]

Noise: Turbulence

\[T(x) = \sum_{freq} \frac{N(x \times freq)}{freq} \]

Also known as fractal noise

Noise: Scales

![Graphs showing different scales of noise]

Noise: Turbulence

![Graph showing sum of noise functions]

Turbulence

![Image of turbulent noise]

Noise

![Image of noise pattern]
Noise vs. Turbulence

Marble Texture

Simple Marble Shader

Vector3f pos = ray.hit_pos * scale;

float turb = turbulence(pos, base_freq);
// make veins along y axis
float noise = sin(pos.y + turb);

compute_colour(result, noise, cm);

Marble Texture

Simple Clouds
Bumpmapping With Noise

No noise

\[\tilde{n}^+ = \text{noise}(x, y, z) \]

Bumpmapping With Noise

\[\tilde{n}^+ = 3 \times \text{noise}(x, y, z) \]

Displacement Using Turbulence

Cellular Noise

- Steve Worley 1996
Cellular Noise

- Place random points in a grid
- Use distance measure as a noise function

\[F_n(\tilde{x}) = \text{distance to } n\text{'th point from } \tilde{x} \]

Worley F1 (Anson Chu)

Worley F1 in 3D

Worley F2 (Anson Chu)

Worley F2-F1 (Anson Chu)

Figure 2, F2-F1 (Steve Worley)
Cellular Noise

Manhattan Distance, F1 (Steve Worley)

Fractal Cellular Noise

\[F_n^* = \sum_{\text{freq}} \frac{F_n(\mathbf{x} * \text{freq})}{\text{freq}} \]

Fractal F1-F4 combinations (Steve Worley)

Fractal Cellular Noise

Fractal F1 - color and bumpmap (Steve Worley)

Fractal Cellular Noise

Fractal F1 - bumpmap (Steve Worley)
Fractal Cellular Noise

Fractal F1 - bumpmap (Steve Worley)

Cellular Noise ++

(Kurt Fleischer)

Other Procedural Textures

- Reaction Diffusion
- Better noise

Next time

- Monte Carlo ray tracing + questions