CSE168
Computer Graphics II, Rendering

Spring 2006
Matthias Zwicker
Last time

- Course overview
- Ray tracing algorithm
- Computing primary rays
Today

• Ray-surface intersection
• Implicit, parametric surfaces
• Spheres, triangles, polygons
• Shading
Ray tracing pseudocode

for all pixels {
 computeprimary(&ray)
 for all objects {
 intersect(ray, &hit)
 if hit is closer than firsthit {
 firsthit = hit
 }
 }
}

shade(firsthit)
Implicit surfaces

- Implicit surfaces are defined by
 \[f(p) = 0, \quad \text{where} \quad p = (x, y, z) \]

- Surface normal
 \[n = \nabla f(p) = \left(\frac{\partial f(p)}{\partial x}, \frac{\partial f(p)}{\partial y}, \frac{\partial f(p)}{\partial z} \right) \]

- Given a ray
 \[p(t) = e + td \]

- Ray-surface intersection
 \[f(p(t)) = 0 \]
Example: infinite plane

- Normal \(\mathbf{n} \), point on plane \(\mathbf{a} \)
 \[
 f(p) = (p - a) \cdot n = 0
 \]

- Intersection with \(p(t) \)
 \[
 (e + td - a) \cdot n = 0
 \]

 \[
 t = \frac{(a-e) \cdot n}{d \cdot n}
 \]

- Surface normal
 \[
 \nabla ((p - a) \cdot n) = n
 \]
Parametric surfaces

- Parameters u, v

$$x = f(u, v)$$
$$y = g(u, v)$$
$$z = h(u, v)$$

- Surface normal

$$\mathbf{n}(u, v) = \begin{pmatrix} \frac{\partial f}{\partial u}, & \frac{\partial g}{\partial u}, & \frac{\partial h}{\partial u} \end{pmatrix} \times \begin{pmatrix} \frac{\partial f}{\partial v}, & \frac{\partial g}{\partial v}, & \frac{\partial h}{\partial v} \end{pmatrix}$$

- Cross product of tangent vectors
Parametric surfaces

• Ray-surface intersection

\[e_x + t d_x = f(u, v) \]
\[e_y + t d_y = g(u, v) \]
\[e_z + t d_z = f(u, v) \]

• Easy to solve for parametric planes (see ray-triangle intersection)

• Requires iterative solution for most non-linear surfaces (e.g., NURBS)
Ray-sphere intersection

• Sphere with center \(c = (c_x, c_y, c_z) \), radius \(R \)

\[
(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - R^2 = 0
\]

\[
(p - c) \cdot (p - c) - R^2 = 0
\]

• Use \(p(t) = e + td \)

\[
(e + td - c) \cdot (e + td - c) - R^2 = 0
\]

• Rearrange

\[
(d \cdot d)t^2 + 2d \cdot (e - c)t + (e - c) \cdot (e - c) - R^2 = 0
\]
Ray-sphere intersection

- Surface normal
 \[n = \nabla \left((p - c) \cdot (p - c) - R^2 \right) = 2(p - c) \]

- Unit normal
 \[(p - c)/R \]
Ray-triangle intersection

- Parametric description of a triangle with vertices \(a, b, c\)

\[
p = a + \beta(b - a) + \gamma(c - a)
\]

where \(\beta > 0, \gamma > 0, \beta + \gamma < 1\)

- Convention: vertices are ordered counter-clockwise as seen from the outside
Ray-triangle intersection

• Outward-pointing normal
 \[n = (b - a) \times (c - a) \]

• Triangle in barycentric coordinates
 \[p = \alpha a + \beta b + \gamma c \]
 where \(\alpha + \beta + \gamma = 1 \),
 \[0 < \alpha < 1, 0 < \beta < 1, 0 < \gamma < 1 \]
Ray-triangle intersection

- Intersection condition
 \[e + td = a + \beta(b - a) + \gamma(c - a) \]

- One equation for each coordinate
 \[
 \begin{align*}
 e_x + td_x &= a_x + \beta(b_x - a_x) + \gamma(c_x - a_x) \\
 e_y + td_y &= a_y + \beta(b_y - a_y) + \gamma(c_y - a_y) \\
 e_z + td_z &= a_z + \beta(b_z - a_z) + \gamma(c_z - a_z)
 \end{align*}
 \]
Ray-triangle intersection

• In matrix form

\[
\begin{bmatrix}
 a_x - b_x & a_x - c_x & d_x \\
 a_y - b_y & a_y - c_y & d_y \\
 a_z - b_z & a_z - c_z & d_z
\end{bmatrix}
\begin{bmatrix}
 \beta \\
 \gamma \\
 t
\end{bmatrix}
=
\begin{bmatrix}
 a_x - e_x \\
 a_y - e_y \\
 a_z - e_z
\end{bmatrix}
\]

• Solve for β, γ, t using Cramer’s rule (Shirley page 157)
Interpolating normals

- Sometimes, we store a normal with each vertex n_a, n_b, n_c
- Interpolating normals at barycentric coordinates α, β, γ
 \[n(\alpha, \beta, \gamma) = \alpha n_a + \beta n_a + \gamma n_a \]
- The same for other vertex attributes
Ray-polygon intersection

- Vertices $p_1 \ldots p_m$
- Polygon lies on plane

 $$(p - p_1) \cdot n = 0$$

- Intersection with ray $p(t) = e + td$

 $$t = \frac{(p_1 - e) \cdot n}{d \cdot n}$$

- Determine whether $p(t)$ lies within the polygon
Ray-polygon intersection

p_1, p_2, p_3, p_4, p_5

$p(t)$

xy, yz or zx plane
Ray-polygon intersection
Ray-polygon intersection

$\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \mathbf{p}_5$

$p(t)$

xy, yz or zx plane
Ray-polygon intersection

$p(t)$

p_1, p_2, p_3, p_4, p_5

xy, yz or zx plane
The hit record

class hit_record {
 t // intersection parameter
 p // intersection point
 n // normal at intersection point
 *object // pointer to hit object
}
Intersecting transformed objects

- Primary rays are in world coordinates
- Objects may be expressed in local object coordinates
- Transformation

\[p_{\text{world}} = M_{\text{obj} \rightarrow \text{world}} p_{\text{object}} \]
Intersecting transformed objects

• Transform rays from world to object coordinates

\[p_{object}(t) = M_{obj \rightarrow world}^{-1} p_{world}(t) \]
\[= M_{obj \rightarrow world}^{-1} e + t M_{obj \rightarrow world}^{-1} d \]
Instancing

- Re-use objects without replicating them in memory
- Allow additional transformation

```cpp
class instance : object {
    *object // pointer to an object
    M      // object to world transformation
    M_inv  // world to object transformation
}
```
Instancing

• For intersection, transform ray instead of geometry
• Hit record needs to be transformed back to world coordinates

```cpp
instance::intersect( ray, &hit ) {
    ray_object = transform_ray( ray, M_inv )
    object->intersect( ray_object, &hit_object )
    hit = transform_hit( hit_object, M )
}
```
Shading

for all pixels {
 computeprimary(&ray)
 for all objects {
 intersect(ray, &hit)
 if hit is closer than firsthit {
 firsthit = hit
 }
 }
}

shade(firsthit)
Shading

- Disclaimer
- The BRDF
- A simple model with diffuse, specular, and ambient components
Disclaimer

- Ultimate goal is to model physical process of light transport
- Light transport is complicated in reality
- For now, a hacker’s approach
 - Simple mathematical models, easy to implement
 - Loosely connected to physics
 - Reproduce perceptually prominent effects
Disclaimer

- More physics background in the second part of the course
- Colors, reflectance coefficients
 - RGB triplets
 - Each color value between 0 and 1
The BRDF

- *Bi-directional reflectance distribution function*
- Describes how a surface reflects light
 - Locally, at a specific point
- Contains *almost* all information about the appearance of surfaces
 - “Color”, shiny, glossy, mirror, matte, ...
The BRDF

• Given
 - Light direction \(l \)
 - Viewing direction \(v \)

• Return
 \[\rho(l, v) \]
 - Fraction of light arriving from source that is transported towards viewer
 - Function of two directions, i.e., 4 angles (variables/dimensions)
The BRDF

• Given
 - Light direction \(l \)
 - Viewing direction \(v \)

• Return

 \[\rho(l, v) \]

 - Fraction of light arriving from source that is transported towards viewer
 - Function of two directions, i.e., 4 angles (variables/dimensions)
The BRDF

• Given
 - Light direction \(l \)
 - Viewing direction \(v \)

• Return
 \[\rho(l, v) \]
 - Fraction of light arriving from source that is transported towards viewer
 - Function of two directions, i.e., 4 angles (variables/dimensions)
The BRDF

• More about physics of BRDFs (units) later
• Frequency dependent, use RGB components
• Real materials have spatially varying BRDFs
 - Different BRDF at each point
 - Function with 6 degrees of freedom/dimensions (two for location on the surface, 4 for directions)
A simple model

- Sum of 3 components

\[\text{diffuse} + \text{specular} + \text{ambient} = \]
Diffuse term

- Matte, not shiny materials
- Highly diffuse materials
 - Paper
 - Unfinished wood
 - Unpolished stone
- View-independent
Diffuse term

\[\rho(l, v), \text{ fixed } l \]

“slice” through BRDF
Diffuse term

• Ideal diffuse surfaces follow Lambert’s law

\[L \propto \cos(\theta) \]

\[L \propto \mathbf{n} \cdot \mathbf{l} \]

where \(L \) is apparent surface color

• Surface normal \(\mathbf{n} \)

• Light direction \(\mathbf{l} \)

• Unit vectors!
Diffuse term

- **Practical model**
 - Light color L_i
 - Surface color R_d
 - Avoid negative dot products

 $$L = R_d L_i \max(0, \mathbf{n} \cdot \mathbf{l})$$

- **Two-sided lighting**

 $$L = R_d L_i |\mathbf{n} \cdot \mathbf{l}|$$
Specular term

- Highlights
- View dependent
 - Highlights move across surfaces as the viewpoint moves
- Blurry reflections of light sources
- Are often the color of the light source (e.g. plastics, but not metals)
Specular term

Fixed 1
“Specular lobe”
Specular highlights

- Phong shading
- Reflected light direction r
- Viewing direction e
- Phong exponent p

$$L = L_i R_s \max(0, e \cdot r)^p$$
Specular highlights

- Unit reflection vector

\[r = -l + 2(l \cdot n)n \]
Specular highlights

- Alternative formulation
- Halfway vector h

\[h = \frac{e + l}{\|e + l\|} \]

\[L = L_i R_s (h \cdot n)^p \]
Specular highlights

- Varying specular exponents
Ambient term

- “Ambient, omni-directional” light
 \[L = R_d L_a \]
- Account for light that is not directly emitted from light sources
- Cheapest of all hacks
Combined lighting model

\[L = L_i R_d \max(0, n \cdot l) + L_i R_s (h \cdot n)^p + R_d L_a \]

- Several light sources \(L_{i,k} \)

\[L = R_d L_a + \sum_k L_{i,k} (R_d \max(0, n \cdot l)) + R_s (h \cdot n)^p \]
Point and directional lights

- **Directional light**
 - Approximates light sources far away from objects
 - Constant direction

- **Point light**
 - Direction changes over surfaces
Falloff, spot lights

- Physically, intensity falloff from point light $1/r^2$
- Looks bad, in practice $1/r$
- Spot light
Discussion section

- Tomorrow Thursday
- 11:00-12:30, EBU3B b250
- Introduction to base code