Outline for today

- Inverses of Transforms
- Curves overview
- Bézier curves
Graphics pipeline transformations

- Remember the series of transforms in the graphics pipe:
 - **M** - model: places object in world space
 - **C** - camera: places camera in world space
 - **P** - projection: from camera space to normalized view space
 - **D** - viewport: remaps to image coordinates

- And remember about **C**:
 - handy for positioning the camera as a model
 - *backwards* for the pipeline:
 - we need to get from world space to camera space

- So we need to use **C⁻¹**
 - You’ll need it for project 4: OpenGL wants you to load **C⁻¹** as the base of the MODELVIEW stack
How do we get \mathbf{C}^{-1}?

- Could construct \mathbf{C}, and use a matrix-inverse routine
 - Would work.
 - But relatively slow.
 - And we didn’t give you one :)
- Instead, let’s construct \mathbf{C}^{-1} directly
 - based on how we constructed \mathbf{C}
 - based on shortcuts and rules for affine transforms
Inverse of a translation

- Translate back, i.e., negate the translation vector

\[
T(\bar{v}) = \begin{bmatrix}
1 & 0 & 0 & v_x \\
0 & 1 & 0 & v_y \\
0 & 0 & 1 & v_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
T^{-1}(\bar{v}) = T(-\bar{v}) = \begin{bmatrix}
1 & 0 & 0 & -v_x \\
0 & 1 & 0 & -v_y \\
0 & 0 & 1 & -v_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Easy to verify:

\[
T(-\bar{v}) T(\bar{v}) = \begin{bmatrix}
1 & 0 & 0 & -v_x \\
0 & 1 & 0 & -v_y \\
0 & 0 & 1 & -v_z \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & v_x \\
0 & 1 & 0 & v_y \\
0 & 0 & 1 & v_z \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & v_x - v_x \\
0 & 1 & 0 & v_y - v_y \\
0 & 0 & 1 & v_z - v_z \\
0 & 0 & 0 & 1
\end{bmatrix} = I
\]
Inverse of a scale

- Scale by the inverses

\[
S(s_x, s_y, s_z) = \begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
S^{-1}(s_x, s_y, s_z) = S\left(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z}\right) = \begin{bmatrix}
 1/s_x & 0 & 0 & 0 \\
 0 & 1/s_y & 0 & 0 \\
 0 & 0 & 1/s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

- Easy to verify:

\[
S\left(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z}\right) S(s_x, s_y, s_z) = \begin{bmatrix}
 1/s_x & 0 & 0 & 0 \\
 0 & 1/s_y & 0 & 0 \\
 0 & 0 & 1/s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} = I
\]
Inverse of a rotation

- Rotate about the same axis, with the oppose angle:
 \[\mathbf{R}^{-1}(\vec{a}, \theta) = \mathbf{R}(\vec{a}, -\theta) \]

For example:
\[
\mathbf{R}_z(\theta) = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\mathbf{R}_z^{-1}(\theta) = \mathbf{R}_z(-\theta) = \begin{bmatrix}
\cos(\theta) & -\sin(-\theta) & 0 & 0 \\
\sin(-\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Inverse of a rotation is the transpose:
 \[\mathbf{R}^{-1}(\vec{a}, \theta) = \mathbf{R}^T(\vec{a}, \theta) \]
 - Columns of a rotation matrix are orthonormal
 - \(\mathbf{A}^T \mathbf{A} \) produces all columns’ dot-product combinations as matrix
 - Dot product of a column with itself = 1 (on the diagonal)
 - Dot product of a column with any other column = 0 (off the diagonal)
Inverses of composition

- If you have a series of transforms composed together

\[M = A \ B \ C \ D \]

To invert, compose inverses in the reverse order

\[M^{-1} = D^{-1} \ C^{-1} \ B^{-1} \ A^{-1} \]

Easy to verify:

\[M^{-1} \ M = (D^{-1} \ C^{-1} \ B^{-1} \ A^{-1})(A \ B \ C \ D) \]

\[= D^{-1} \ C^{-1} \ B^{-1} \ A^{-1} \underbrace{A}_{I} \ B \ C \ D \]

\[= D^{-1} \ C^{-1} \ B^{-1} \underbrace{B}_{I} \ C \ D \]

\[= D^{-1} \underbrace{C}_{I} \ C \ D \]

\[= D^{-1} \ D \]

\[= I \]
Composing with inverses, pictorially

- To go from one space to another, compose along arrows
 - Backwards along arrow: use inverse transform

\[
\text{Lamp in world coords} = M_{\text{table1}} \cdot M_{\text{top1}} \cdot M_{\text{lamp}}
\]

\[
\text{Plant in Tabletop1 coords} = M_{\text{top1}}^{-1} \cdot M_{\text{table1}}^{-1} \cdot M_{\text{table2}} \cdot M_{\text{top2}} \cdot M_{\text{plant}}
\]
Model-to-Camera transform

Model-to-Camera transform is given by

$$\text{Model-to-Camera} = \text{C}^{-1}\text{M}$$
The look-at transformation

- Remember, we constructed C using the look-at idiom:

 Given: eye point e, target point t, and up vector \mathbf{u}
 Construct: columns of camera matrix C

 $\mathbf{d} = e$
 $\hat{\mathbf{c}} = \frac{e - t}{|e - t|}$
 $\hat{\mathbf{a}} = \frac{\mathbf{u} \times \hat{\mathbf{c}}}{|\mathbf{u} \times \hat{\mathbf{c}}|}$
 $\mathbf{b} = \hat{\mathbf{c}} \times \hat{\mathbf{a}}$

 Important: $\hat{\mathbf{a}}, \mathbf{b}, \hat{\mathbf{c}}$ are orthonormal
\(C^{-1} \) from \(a, b, c, d \) columns

- If we construct a transform using \(\vec{a}, \vec{b}, \vec{c}, \vec{d} \) columns, it's the same as a composition.
 - First rotate/scale using \(\vec{a}, \vec{b}, \vec{c} \), then translate by \(\vec{d} \):
 \[
 C = \begin{bmatrix}
 a_x & b_x & c_x & d_x \\
 a_y & b_y & c_y & d_y \\
 a_z & b_z & c_z & d_z \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 = \begin{bmatrix}
 1 & 0 & 0 & d_x \\
 0 & 1 & 0 & d_y \\
 0 & 0 & 1 & d_z \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 = T(\vec{d}) \ M
 \]
 - If \(\vec{a}, \vec{b}, \vec{c} \) are orthonormal, they define a pure rotation:
 \[
 C = T(\vec{d}) \ R
 \]
- To take the inverse:
 \[
 C^{-1} = \left(T(\vec{d}) \ R \right)^{-1} = R^{-1} \ T^{-1}(\vec{d})
 \]
 \[
 C^{-1} = R^T \ T(-\vec{d})
 \]
 \[
 C^{-1} = \begin{bmatrix}
 a_x & a_y & a_z & 0 \\
 b_x & b_y & b_z & 0 \\
 c_x & c_y & c_z & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 & -d_x \\
 0 & 1 & 0 & -d_y \\
 0 & 0 & 1 & -d_z \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
- Build \(R^T \) using \(\vec{a}, \vec{b}, \vec{c} \) as rows, build \(T(-\vec{d}) \), compose them
- Notice, this does the translation first, then the rotation.

Exercise: what does the final matrix look like?
Outline for today

- Inverses of Transforms
- *Curves overview*
- Bézier curves
Usefulness of curves in modeling

- Surface of revolution
Usefulness of curves in modeling

- Extruded/swept surfaces
Usefulness of curves in modeling

- Surface patches
Usefulness of curves in animation

- Provide a “track” for objects

http://www.f-lohmueller.de/
Usefulness of curves in animation

- Specify parameter values over time: 2D curve editor
How to represent curves

- Specify every point along a curve?
 - Used sometimes as “freehand drawing mode” in 2D applications
 - Hard to get precise results
 - Too much data, too hard to work with generally

- Specify a curve using a small number of “control points”
 - Known as a spline curve or just spline

![Diagram of a vase drawn using control points](image)
Interpolating Splines

- Specify points, the curve goes through all the points
- Seems most intuitive
- Surprisingly, not usually the best choice.
 - Hard to predict behavior
 - Overshoots
 - Wiggles
 - Hard to get “nice-looking” curves
Approximating Splines

- "Influenced" by control points but not necessarily go through them.

- Various types & techniques
 - Most common: (Piecewise) Polynomial Functions
 - Most common of those:
 - Bézier
 - B-spline
 - Each has good properties
 - We’ll focus on Bézier splines
What is a curve, anyway?

- We draw it, think of it as a thing existing in space
- But mathematically we treat it as a function, \(x(t) \)
 - Given a value of \(t \), computes a point \(x \)
 - Can think of the function as moving a point along the curve
The tangent to the curve

- Vector points in the direction of movement
 - (Length is the speed in the direction of movement)
 - Also a function of t, written $x'(t)$ or $\frac{dx}{dt}(t)$
Polynomial Functions

- **Linear:** (1st order)
 \[f(t) = at + b \]

- **Quadratic:** (2nd order)
 \[f(t) = at^2 + bt + c \]

- **Cubic:** (3rd order)
 \[f(t) = at^3 + bt^2 + ct + d \]
Point-valued Polynomials (Curves)

- **Linear:** (1st order) \(x(t) = at + b \)
- **Quadratic:** (2nd order) \(x(t) = at^2 + bt + c \)
- **Cubic:** (3rd order) \(x(t) = at^3 + bt^2 + ct + d \)

Each is 3 polynomials “in parallel”:

\[
x_x(t) = a_xt + b_x \quad x_y(t) = a_yt + b_y \quad x_z(t) = a_zt + b_z
\]

- We usually define the curve for \(0 \leq t \leq 1 \)
How much do you need to specify?

- Two points define a line (1st order)
- Three points define a quadratic curve (2nd order)
- Four points define a cubic curve (3rd order)
- \(k+1\) points define a \(k\)-order curve

- Let’s start with a line…
Linear Interpolation

- **Linear interpolation**, AKA **Lerp**
 - Generates a value that is somewhere in between two other values
 - A ‘value’ could be a number, vector, color, …

- Consider interpolating between two points \(\mathbf{p}_0 \) and \(\mathbf{p}_1 \) by some parameter \(t \)
 - This defines a “curve” that is straight. AKA a first-order spline
 - When \(t=0 \), we get \(\mathbf{p}_0 \)
 - When \(t=1 \) we get \(\mathbf{p}_1 \)
 - When \(t=0.5 \) we get the midpoint

\[
x(t) = Lerp(t, \mathbf{p}_0, \mathbf{p}_1) = (1-t)\mathbf{p}_0 + t \mathbf{p}_1
\]
Linear interpolation

- We can write this in three ways
 - All exactly the same equation
 - Just different ways of looking at it
 - Different properties become apparent

- As a weighted average of the control points:
 \[x(t) = (1 - t)p_0 + (t)p_1 \]

- As a polynomial in \(t \):
 \[x(t) = (p_1 - p_0)t + p_0 \]

- In a matrix form:
 \[x(t) = \begin{bmatrix} p_0 & p_1 \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} t \end{bmatrix} \]}
Linear interpolation as weighted average

\[x(t) = (1 - t)p_0 + (t)p_1 \]

\[= B_0(t) p_0 + B_1(t)p_1, \text{ where } B_0(t) = 1 - t \text{ and } B_1(t) = t \]

- Each weight is a function of \(t \)
 - The sum of the weights is always 1, for any value of \(t \)
 - Also known as *blending functions*
Linear interpolation as polynomial

\[x(t) = \left(\begin{array}{c} p_1 - p_0 \end{array} \right) \cdot t + \begin{array}{c} p_0 \end{array} \]

- Curve is based at point \(p_0 \)
- Add the vector, scaled by \(t \)
Linear interpolation in matrix form

\[
x(t) = \begin{bmatrix} p_0 & p_1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} = G \cdot B \cdot T
\]

where:

- \(G = \begin{bmatrix} p_0 & p_1 \end{bmatrix} \) is the "Geometry matrix"
- \(B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \) is the "Geometric Basis"
- \(T = \begin{bmatrix} t \\ 1 \end{bmatrix} \) is the "Polynomial basis"

- Actually, this is shorthand for separate equations for \(x, y, z \)

\[
x_x(t) = \begin{bmatrix} p_{0x} & p_{1x} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix}
\]

\[
x_y(t) = \begin{bmatrix} p_{0y} & p_{1y} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix}
\]

\[
x_z(t) = \begin{bmatrix} p_{0z} & p_{1z} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix}
\]

- Or it can really be put into one matrix

\[
x(t) = \begin{bmatrix} p_{0x} & p_{1x} \\ p_{0y} & p_{1y} \\ p_{0z} & p_{1z} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix}
\]
Linear Interpolation: tangent

- For a straight line, the tangent is constant

\[x'(t) = p_1 - p_0 \]

- As a weighted average of the control points:

\[x'(t) = (-1)p_0 + (+1)p_1 \]

- As a (trivial, zero-order) polynomial in \(t \):

\[x'(t) = 0t + (p_1 - p_0) \]

- In a matrix form:

\[x'(t) = \begin{bmatrix} p_0 & p_1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]
Outline for today

- Inverses of Transforms
- Curves overview
- Bézier curves
Bézier Curves

- Can be thought of as a higher order extension of linear interpolation

Linear

Quadratic

Cubic
Cubic Bézier Curve

- Most common case
 - 4 points for a cubic Bézier
 - Interpolates the endpoints
 - Midpoints are “handles” that control the tangent at the endpoints
 - Easy and intuitive to use

- Many demo applets online
 - http://www.cs.unc.edu/~mantler/research/bezier/
 - http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Bezier/bezier.html

- Convex Hull property
- Variation-diminishing property
Bézier Curve Formulation

- Ways to formulate Bézier curves, analogous to linear:
 - Weighted average of control points -- weights are *Bernstein polynomials*
 - Cubic polynomial function of t
 - Matrix form
- Also, the *de Casteljau* algorithm: recursive linear interpolations

- Aside: Many of the original CG techniques were developed for Computer Aided Design and manufacturing.
 - Before games, before movies, CAD/CAM was the big application for CG.
 - Pierre Bézier worked for Peugeot, developed curves in 1962
 - Paul de Casteljau worked for Citroen, developed the curves in 1959
Find the point x on the curve as a function of parameter t:

$\mathbf{x}(t)$
de Casteljau Algorithm

- A recursive series of linear interpolations
 - Works for any order. We’ll do cubic
- Not terribly efficient to evaluate this way
 - Other forms more commonly used
- So why study it?
 - Kinda neat
 - Intuition about the geometry
 - Useful for subdivision (later today)
de Casteljau Algorithm

- Start with the control points
- And given a value of t
 - In the drawings, $t \approx 0.25$
de Casteljau Algorithm

\[q_0(t) = \text{Lerp}(t, p_0, p_1) \]
\[q_1(t) = \text{Lerp}(t, p_1, p_2) \]
\[q_2(t) = \text{Lerp}(t, p_2, p_3) \]
de Casteljau Algorithm

\[r_0(t) = Lerp\left(t, q_0(t), q_1(t)\right) \]

\[r_1(t) = Lerp\left(t, q_1(t), q_2(t)\right) \]
de Casteljau Algorithm

\[\mathbf{x}(t) = \text{Lerp}(t, \mathbf{r}_0(t), \mathbf{r}_1(t)) \]
de Casteljau algorithm

- Applets
 - http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
Recursive Linear Interpolation

\[x = \text{Lerp}(t, r_0, r_1) \]
\[r_0 = \text{Lerp}(t, q_0, q_1) \]
\[r_1 = \text{Lerp}(t, q_1, q_2) \]
\[q_0 = \text{Lerp}(t, p_0, p_1) \]
\[q_1 = \text{Lerp}(t, p_1, p_2) \]
\[q_2 = \text{Lerp}(t, p_2, p_3) \]

Diagram:

- \(p_0 \)
- \(p_1 \)
- \(p_2 \)
- \(p_3 \)
- \(p_4 \)
Expand the Lerps

\[q_0(t) = Lerp(t, p_0, p_1) = (1 - t)p_0 + tp_1 \]
\[q_1(t) = Lerp(t, p_1, p_2) = (1 - t)p_1 + tp_2 \]
\[q_2(t) = Lerp(t, p_2, p_3) = (1 - t)p_2 + tp_3 \]

\[r_0(t) = Lerp(t, q_0(t), q_1(t)) = (1 - t)((1 - t)p_0 + tp_1) + t((1 - t)p_1 + tp_2) \]
\[r_1(t) = Lerp(t, q_1(t), q_2(t)) = (1 - t)((1 - t)p_1 + tp_2) + t((1 - t)p_2 + tp_3) \]

\[x(t) = Lerp(t, r_0(t), r_1(t)) \]
\[= (1 - t)((1 - t)((1 - t)p_0 + tp_1) + t((1 - t)p_1 + tp_2)) \]
\[+ t((1 - t)((1 - t)p_1 + tp_2) + t((1 - t)p_2 + tp_3)) \]
Weighted average of control points

- Group this as a weighted average of the points:
 \[x(t) = (1 - t)(1 - t)(1 - t)p_0 + t(p_1) + t((1 - t)p_1 + t(p_2)) \]
 \[+ t((1 - t)(1 - t)p_1 + t(p_2) + t((1 - t)p_2 + t(p_3))) \]

 \[x(t) = (1 - t)^3 p_0 + 3(1 - t)^2 t p_1 + 3(1 - t)t^2 p_2 + t^3 p_3 \]

 \[x(t) = \begin{cases}
 B_0(t) & (-t^3 + 3t^2 - 3t + 1)p_0 \\
 B_1(t) & (3t^3 - 6t^2 + 3t)p_1 \\
 B_2(t) & (-3t^3 + 3t^2)p_2 \\
 B_3(t) & (t^3)p_3
 \end{cases} \]
Bézier using Bernstein Polynomials

\[x(t) = B_0(t)p_0 + B_1(t)p_1 + B_2(t)p_2 + B_3(t)p_3 \]

The cubic Bernstein polynomials:

\[B_0(t) = -t^3 + 3t^2 - 3t + 1 \]
\[B_1(t) = 3t^3 - 6t^2 + 3t \]
\[B_2(t) = -3t^3 + 3t^2 \]
\[B_3(t) = t^3 \]

\[\sum B_i(t) = 1 \]

- **Notice:**
 - Weights always add to 1
 - \(B_0 \) and \(B_3 \) go to 1 -- interpolating the endpoints
General Bernstein Polynomials

\[B_0^1(t) = -t + 1 \]
\[B_1^1(t) = t \]
\[B_2^1(t) = t^2 \]

\[B_0^2(t) = t^2 - 2t + 1 \]
\[B_1^2(t) = -2t^2 + 2t \]
\[B_2^2(t) = t^2 \]

\[B_0^3(t) = -t^3 + 3t^2 - 3t + 1 \]
\[B_1^3(t) = 3t^3 - 6t^2 + 3t \]
\[B_2^3(t) = -3t^3 + 3t^2 \]
\[B_3^3(t) = t^3 \]

\[B_i^n(t) = \binom{n}{i} (1-t)^{n-i} t^i \]
\[\binom{n}{i} = \frac{n!}{i!(n-i)!} \]

\[\sum B_i^n(t) = 1 \]
General Bézier using Bernstein Polynomials

Bernstein polynomial form of an nth-order Bézier curve:

$$B_i^n(t) = \binom{n}{i} (1-t)^{n-i} t^i$$

$$x(t) = \sum_{i=0}^{n} B_i^n(t) p_i$$
Convex Hull Property

- Construct a convex polygon around a set of points
 - The *convex hull* of the control points
- Any weighted average of the points, with the weights all between 0 and 1:
 - Known as a *convex combination* of the points
 - Result always lies within the convex hull (including on the border)

- Bézier curve is a convex combination of the control points
 - Curve is always inside the convex hull
 - Very important property!
 - Makes curve predictable
 - Allows culling
 - Allows intersection testing
 - Allows adaptive tessellation
Cubic Equation Form

Start with Bernstein form:
\[x(t) = (-t^3 + 3t^2 - 3t + 1)p_0 + (3t^3 - 6t^2 + 3t)p_1 + (-3t^3 + 3t^2)p_2 + (t^3)p_3 \]

Regroup into coefficients of \(t \):
\[x(t) = (-p_0 + 3p_1 - 3p_2 + p_3)t^3 + (3p_0 - 6p_1 + 3p_2)t^2 + (-3p_0 + 3p_1)t + (p_0)1 \]

\[
\begin{align*}
x(t) &= at^3 + bt^2 + ct + d \\
a &= (-p_0 + 3p_1 - 3p_2 + p_3) \\
b &= (3p_0 - 6p_1 + 3p_2) \\
c &= (-3p_0 + 3p_1) \\
d &= (p_0)
\end{align*}
\]

- Good for fast evaluation: precompute constant coefficients \((a,b,c,d)\)
- Doesn’t give much geometric intuition
 - But the geometry can be extracted from the coefficients
Aside: linear combinations of points

- Reminder: we can’t scale a point or add two points
 - Can subtract two points
 - Can take weighted average of points if the weights add up to one
 - Act on homogeneous points: w component of result must be 1

\[\frac{1}{4} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{3}{4} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ OK point} \]

- Can also take weighted average of points if the weights add up to 0
 - The result gives w=0, i.e. a vector
 - E.g. \(p - q \) is the same as \((+1)p + (-1)q \)
 - Can also do \((-1)p_0 + (3)p_1 + (-3)p_2 + (1)p_3\)

\[-1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ OK vector} \]
Cubic Equation, vector notation

\[x(t) = \vec{a}t^3 + \vec{b}t^2 + \vec{c}t + d \]

\[\vec{a} = (-p_0 + 3p_1 - 3p_2 + p_3) \]
\[\vec{b} = (3p_0 - 6p_1 + 3p_2) \]
\[\vec{c} = (-3p_0 + 3p_1) \]
\[d = (p_0) \]

- Curve is based at \(p_0 \) AKA \(d \)
- Increasing \(t \) introduces the other vectors:
 - first order: \(\vec{c} \) -- moves towards \(p_1 \)
 - second order: \(\vec{b} \) -- subtracts off \(\vec{c} \), pulls towards \(p_2 \)
 - third order: \(\vec{a} \) -- subtracts off everything, moves towards \(p_3 \)
Cubic Matrix Form

\[x(t) = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} & \vec{d} \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \]

\[\vec{a} = (-p_0 + 3p_1 - 3p_2 + p_3) \]
\[\vec{b} = (3p_0 - 6p_1 + 3p_2) \]
\[\vec{c} = (-3p_0 + 3p_1) \]
\[\vec{d} = (p_0) \]

\[x(t) = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \]

- Other cubic splines use different basis matrix \(B \)
 - Hermite, Catmull-Rom, B-Spline, …
Cubic Matrix Form

- 3 parallel equations, in x, y and z:

\[
x_x(t) = \begin{bmatrix} p_{0x} & p_{1x} & p_{2x} & p_{3x} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}
\]

\[
x_y(t) = \begin{bmatrix} p_{0y} & p_{1y} & p_{2y} & p_{3y} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}
\]

\[
x_z(t) = \begin{bmatrix} p_{0z} & p_{1z} & p_{2z} & p_{3z} \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}
\]
Matrix Form

- Bundle into a single matrix

\[
x(t) = \begin{bmatrix}
p_{0x} & p_{1x} & p_{2x} & p_{3x} \\
p_{0y} & p_{1y} & p_{2y} & p_{3y} \\
p_{0z} & p_{1z} & p_{2z} & p_{3z}
\end{bmatrix} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
t^3 \\
t^2 \\
t \\
1
\end{bmatrix}
\]

- Evaluate quickly:
 - Precompute \(C \)
 - Take advantage of existing 4x4 matrix hardware support
Tangent

- The derivative of a curve represents the tangent vector to the curve at some point.

\[\frac{dx}{dt}(t) \]

\(x(t) \)
Tangent

- Computing the tangent of a polynomial curve is easy:

\[x(t) = \bar{a}t^3 + \bar{b}t^2 + \bar{c}t + \bar{d} \quad x'(t) = \frac{dx}{dt}(t) = 3\bar{a}t^2 + 2\bar{b}t + \bar{c} \]

\[x(t) = \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \quad x'(t) = \frac{dx}{dt}(t) = \begin{bmatrix} \bar{a} \\ \bar{b} \\ \bar{c} \\ \bar{d} \end{bmatrix} \begin{bmatrix} 3t^2 \\ 2t \\ 1 \\ 0 \end{bmatrix} \]

- Notice \(x'(t) \) is a vector
 - Doesn’t depend on \(\bar{d} \)
 - Doesn’t depend on position of curve
Transforming Bézier curves

Two ways to transform a Bézier curve

- Transform the control points, then compute resulting spline point
- Compute spline point, then transform it

Either way, get the same point!

- Curve is defined via affine combination of points
- Invariant under affine transformations
- Convex hull property always remains
Drawing Bézier Curves

- How can you draw a curve?
 - Generally no low-level support for drawing curves
 - Can only draw line segments or individual pixels

- Approximate the curve as a series of line segments
 - Analogous to tessellation of a surface
 - Methods:
 - Sample uniformly
 - Sample adaptively
 - Recursive Subdivision
Uniform Sampling

- Approximate curve with \(N \) straight segments
 - \(N \) chosen in advance
 - Evaluate \(x_i = x(t_i) \) where \(t_i = \frac{i}{N} \) for \(i = 0, 1, \ldots, N \)
 \[
x_i = \bar{a} \frac{i^3}{N^3} + \bar{b} \frac{i^2}{N^2} + \bar{c} \frac{i}{N} + d
 \]
 - Connect the points with lines

- Too few points?
 - Bad approximation
 - “Curve” is faceted

- Too many points?
 - Slow to draw too many line segments
 - Segments may draw on top of each other
Adaptive Sampling

- Use only as many line segments as you need
 - Fewer segments needed where curve is mostly flat
 - More segments needed where curve bends
 - No need to track bends that are smaller than a pixel

- Various schemes for sampling, checking results, deciding whether to sample more

- Or, use knowledge of curve structure:
 - Adapt by recursive subdivision
Recursive Subdivision

- Any cubic curve segment can be expressed as a Bézier curve
- Any piece of a cubic curve is itself a cubic curve
- Therefore:
 - Any Bézier curve can be broken up into smaller Bézier curves
 - But how…?
de Casteljau subdivision

- de Casteljau construction points are the control points of two Bézier sub-segments
Adaptive subdivision algorithm:

- Use de Casteljau construction to split Bézier segment
- Examine each half:
 - If flat enough: draw line segment
 - Else: recurse

To test if curve is flat enough
- Only need to test if hull is flat enough
 - Curve is guaranteed to lie within the hull
- e.g., test how far the handles are from a straight segment
 - If it’s about a pixel, the hull is flat
Done

- Next class:
 - Extending to longer curves
 - Extending to curved surfaces