Homogeneous Transformations

\[\mathbf{v}' = \mathbf{M} \cdot \mathbf{v} \]

\[
\begin{bmatrix}
\mathbf{v}'_x \\
\mathbf{v}'_y \\
\mathbf{v}'_z \\
1
\end{bmatrix}
=
\begin{bmatrix}
a_x & b_x & c_x & d_x \\
a_y & b_y & c_y & d_y \\
a_z & b_z & c_z & d_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
\mathbf{v}_x \\
\mathbf{v}_y \\
\mathbf{v}_z \\
1
\end{bmatrix}
\]

\[
\mathbf{v}'_x = a_x \mathbf{v}_x + b_x \mathbf{v}_y + c_x \mathbf{v}_z + d_x
\]

\[
\mathbf{v}'_y = a_y \mathbf{v}_x + b_y \mathbf{v}_y + c_y \mathbf{v}_z + d_y
\]

\[
\mathbf{v}'_z = a_z \mathbf{v}_x + b_z \mathbf{v}_y + c_z \mathbf{v}_z + d_z
\]

\[
1 = 0\mathbf{v}_x + 0\mathbf{v}_y + 0\mathbf{v}_z + 1
\]
3D Transformations

- So far, we have studied a variety of useful 3D transformations:
 - Rotations
 - Translations
 - Scales
 - Shears
 - Reflections
- These are examples of affine transformations
- These can all be combined into a single 4x4 matrix, with $[0 \ 0 \ 0 \ 1]$ on the bottom row
- This implies 12 constants, or 12 degrees of freedom (DOFs)
We mentioned that the translation information is easily extracted directly from the matrix, while the rotation/scale/shear/reflection information is encoded into the upper 3x3 portion of the matrix.

The 9 constants in the upper 3x3 matrix make up 3 vectors called \(\mathbf{a}\), \(\mathbf{b}\), and \(\mathbf{c}\).

If we think of the matrix as a transformation from object space to world space, then the \(\mathbf{a}\) vector is essentially the object’s x-axis transformed into world space, \(\mathbf{b}\) is its y-axis in world space, and \(\mathbf{c}\) is its z-axis in world space.

\(\mathbf{d}\) is of course the position in world space.
Example: Yaw

A spaceship is floating out in space, with a matrix W. The pilot wants to turn the ship 10 degrees to the left (yaw). Show how to modify W to achieve this.
Example: Yaw

- We simply rotate \(\mathbf{W} \) around its own \(\mathbf{b} \) vector, using the ‘arbitrary axis rotation’ matrix:

\[
\mathbf{M} = \mathbf{T} \left(\mathbf{W.d} \right) \cdot \mathbf{R}_a \left(\mathbf{W.b}, 10^\circ \right) \cdot \mathbf{T} \left(- \mathbf{W.d} \right)
\]

\[
\mathbf{W}' = \mathbf{M} \cdot \mathbf{W}
\]

where \(\mathbf{R}_a(\mathbf{a}, \theta) = \)

\[
\begin{bmatrix}
 a_x^2 + c_\theta (1-a_x^2) & a_x a_y (1-c_\theta) - a_z s_\theta & a_x a_z (1-c_\theta) + a_y s_\theta & 0 \\
 a_x a_y (1-c_\theta) + a_z s_\theta & a_y^2 + c_\theta (1-a_y^2) & a_y a_z (1-c_\theta) - a_x s_\theta & 0 \\
 a_x a_z (1-c_\theta) - a_y s_\theta & a_y a_z (1-c_\theta) + a_x s_\theta & a_z^2 + c_\theta (1-a_z^2) & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
So far, we’ve discussed the following spaces:

- Object space (local space)
- World space (global space)
- Camera space
Let’s say we want to render an image of a chair from a certain camera’s point of view.

The chair is placed in world space with matrix W.

The camera is placed in world space with matrix C.

The following transformation takes vertices from the chair’s object space into world space, and then from world space into camera space:

$$\mathbf{v}' = C^{-1} \cdot W \cdot \mathbf{v}$$

Now that we have the object transformed into a space relative to the camera, we can focus on the next step, which is to project this 3D space into a 2D image space.
What we really need is a mapping from 3D space into a special “2.5D” image space.

For practical geometric purposes, it should be thought of as a proper 2D space, but each vertex in this space also has a depth (z coordinate), and so mathematically speaking, it really is a 3D space…

We will say that the visible portion of the image ranges from -1 to 1 in both x and y, with 0,0 in the center of the image.

The z coordinate will also range from -1 to 1 and will represent the depth (1 being nearest and -1 being farthest).

Image space is sometimes called normalized view space or other things…
So far we know how to transform objects from object space into world space and into camera space.

What we need now is some sort of transformation that takes points in 3D camera space and transforms them into our 2.5D image space.

We will refer to this class of transformations as view projections (or just projections).

Simple orthographic view projections can just be treated as one more affine transformation applied after the transformation into camera space.

More complex perspective projections require a non-affine transformation followed by an additional division to convert from 4D homogeneous space into image space.

It is also possible to do more elaborate non-linear projections to achieve fish-eye lens effects, etc., but these require significant changes to the rendering process, not only in the vertex transformation stage, and so we will not cover them…
An orthographic projection is an affine transformation and so it preserves parallel lines. An example of an orthographic projection might be an architect’s top-down view of a house, or a car designer’s side view of a car. These are very valuable for certain applications, but are not used for generating realistic images.
Orthographic Projection

\[\mathbf{v}' = \mathbf{P} \cdot \mathbf{C}^{-1} \cdot \mathbf{W} \cdot \mathbf{v} \]

\[
\mathbf{P}_{\text{ortho}} \left(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far} \right) =
\begin{bmatrix}
2 & 0 & 0 \\
\frac{\text{right} - \text{left}}{\text{right} - \text{left}} & 2 & 0 \\
0 & \frac{\text{top} - \text{bottom}}{\text{top} - \text{bottom}} & 2 \\
0 & 0 & \frac{\text{far} - \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\text{right} + \text{left}}{\text{right} + \text{left}} \\
\frac{\text{right} - \text{left}}{\text{top} + \text{bottom}} \\
\frac{\text{top} - \text{bottom}}{\text{far} + \text{near}} \\
\frac{\text{far} - \text{near}}{\text{far} - \text{near}} & 1
\end{bmatrix}
\]
With a perspective projection, objects become smaller as they get further from the camera, as one normally gets from a photograph or video image. The goal of most real-world camera lens makers is to achieve a perfect perspective projection. Most realistic computer generated images use perspective projections. A fundamental property of perspective projections is that parallel lines will not necessarily remain parallel after the transformation (making them non-affine).
A camera defines some sort of 3D shape in world space that represents the volume viewable by that camera.

For example, a normal perspective camera with a rectangular image describes a sort of infinite pyramid in space.

The tip point of the pyramid is at the camera’s origin and the pyramid projects outward in front of the camera into space.

In computer graphics, we typically prevent this pyramid from being infinite by chopping it off at some distance from the camera. We refer to this as the *far clipping plane*.

We also put a limit on the closest range of the pyramid by chopping off the tip. We refer to this as the *near clipping plane*.

A pyramid with the tip cut off is known as a *frustum*. We refer to a standard perspective view volume as a *view frustum*.
View Frustum

- In a sense, we can think of this view frustrum as a distorted cube, since it has six faces, each with 4 sides.
- If we think of this cube as ranging from -1 to 1 in each dimension \(xyz\), we can think of a perspective projection as a mapping from this view frustrum into a *normalized view space*, or *image space*.
- We need a way to represent this transformation mathematically.
The view frustum is usually defined by a *field of view* (FOV) and an *aspect ratio*, in addition to the near and far clipping plane distances. Depending on the convention, the FOV may represent either the horizontal or vertical field of view. The most common convention is that the FOV is the entire vertical viewing angle. The aspect ratio is the x/y ratio of the final displayed image. For example, if we are viewing on a TV that is 24” x 18”, the aspect ratio would be 24/18 or 4/3. Older style TV’s have a 4/3 aspect ratio, while modern wide screen TV’s use a 16/9 aspect. These sizes are common for computer monitors as well.
Perspective Matrix

$$v'_{(4D)} = P \cdot C^{-1} \cdot W \cdot v$$

$$P_{persp}(fov, aspect, near, far) =$$

$$\begin{bmatrix}
\tan(fov/2) & 0 & 0 & 0 \\
aspect & 0 & \frac{1}{\tan(fov/2)} & 0 \\
0 & 0 & near + far & 2 \cdot near \cdot far \\
0 & 0 & near - far & near - far \\
0 & 0 & -1 & 0
\end{bmatrix}$$
Perspective Matrix

- If we look at the perspective matrix, we see that it doesn’t have [0 0 0 1] on the bottom row.
- This means that when we transform a 3D position vector \([v_x, v_y, v_z, 1]\), we will not necessarily end up with a 1 in the 4th component of the result vector.
- Instead, we end up with a true 4D vector \([v'_x, v'_y, v'_z, v'_w]\).
- The final step of perspective projection is to map this 4D vector back into the 3D \(w=1\) subspace:

\[
\begin{bmatrix}
v_x & v_y & v_z & v_w \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
v_x & v_y & v_z \\
v'_w & v'_w & v'_w \\
\end{bmatrix}
\]
Perspective Transformations

- It is important to make sure that straight lines in 3D space map to straight lines in image space.
- This is easy for x and y, but because of the division, it is possible to have nonlinearities in z.
- The perspective transformation shown in the previous slide assures a straight line mapping, but there are other perspective transformations possible that don’t preserve this.
Viewports

- The final transformation takes points from the -1…1 image space and maps them to an actual rectangle of pixels (device coordinates).
- We can define our final device mapping from normalized view space into an actual rectangular viewport as:

\[
D(x_0, x_1, y_0, y_1) = \begin{bmatrix}
\frac{(x_1 - x_0)}{2} & 0 & 0 & x_0 + \frac{(x_1 - x_0)}{2} \\
0 & \frac{(y_1 - y_0)}{2} & 0 & y_0 + \frac{(y_1 - y_0)}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- The depth value is usually mapped to a 32 bit fixed point value ranging from 0 (near) to 0xffffffff (far).
Spaces

- Object space (3D)
- World space (3D)
- Camera space (3D)
- Un-normalized view space (4D)
- Image space (2.5D)
- Device space (2.5D)
Triangle Rendering

The main stages in the *traditional graphics pipeline* are:

- Transform
- Lighting
- Clipping / Culling
- Scan Conversion
- Pixel Rendering
In the transformation stage, vertices are transformed from their original defining object space through a series of steps into a final ‘2.5D’ device space of actual pixels.

\[
v'_{(4D)} = P \cdot C^{-1} \cdot W \cdot v
\]

\[
v'' = \begin{bmatrix}
 v'_x & v'_y & v'_z \\
 v'_w & v'_w & v'_w
\end{bmatrix}
\]

\[
v''' = D \cdot v''
\]
Transformation: Step 1

\[\mathbf{v}'_{(4D)} = \mathbf{P} \cdot \mathbf{C}^{-1} \cdot \mathbf{W} \cdot \mathbf{v} \]

- \(\mathbf{v} \): The original vertex in object space
- \(\mathbf{W} \): Matrix that transforms object into world space
- \(\mathbf{C} \): Matrix that transforms camera into world space (\(\mathbf{C}^{-1} \) will transform from world space to camera space)
- \(\mathbf{P} \): Non-affine perspective projection matrix
- \(\mathbf{v}' \): Transformed vertex in 4D un-normalized viewing space

Note: sometimes, this step is broken into two (or more) steps. This is often done so that lighting and clipping computations can be done in camera space (before applying the non-affine transformation)
Transformation: Step 2

\[
\mathbf{v}'' = \begin{bmatrix}
\frac{v'_x}{v'_w} & \frac{v'_y}{v'_w} & \frac{v'_z}{v'_w}
\end{bmatrix}
\]

- In the next step, we map points from 4D space into our normalized viewing space, called *image space*, which ranges from -1 to 1 in x, y, and z.
- From this point on, we will mainly think of the point as being 2D (x & y) with additional depth information (z). This is sometimes called 2.5D.
Transformation: Step 3

\[v''' = D \cdot v'' \]

- In the final step of the transformation stage, vertices are transformed from the normalized -1…1 image space and mapped into an actual rectangular viewport of pixels.
Transformation

\[\mathbf{v}'_{(4D)} = \mathbf{P} \cdot \mathbf{C}^{-1} \cdot \mathbf{W} \cdot \mathbf{v} \]

\[\mathbf{v}'' = \begin{bmatrix} \mathbf{v}'_x & \mathbf{v}'_y & \mathbf{v}'_z \\ \mathbf{v}'_w & \mathbf{v}'_w & \mathbf{v}'_w \end{bmatrix} \]

\[\mathbf{v}''' = \mathbf{D} \cdot \mathbf{v}'' \]
Matrices in GL

- GL has several built in routines that cover just about all of the matrix operations we’ve covered so far.
- GL allows the user to specify a transformation and projection to apply to all vertices passed to it.
- Normally, GL applies a 4-step transformation process:
 - Object space to camera space (model-view)
 - Project to 4D space
 - Divide by ‘w’ (project to image space)
 - Map to device coordinates
- Even though the first two steps could be combined into one, they are often kept separate to allow clipping and lighting computations to take place in 3D camera space.
The `glMatrixMode()` command allows you to specify which matrix you want to set.

At this time, there are two different options we’d be interested in:
- `glMatrixMode(GL_MODELVIEW)`
- `glMatrixMode(GL_PROJECTION)`

The *model-view* matrix in GL represents the $C^{-1} \cdot W$ transformation, and the *projection* matrix is the P matrix.

$$v' = P \cdot C^{-1} \cdot W \cdot v$$
The most direct way to set the current matrix transformation is to use `glLoadMatrix()` and pass in an array of 16 numbers making up the matrix.

Alternately, there is a `glLoadIdentity()` command for quickly resetting the current matrix back to identity.
There are several basic matrix operations that do rotations, translations, and scaling.

These operations take the current matrix and modify it by applying the new transformation before the current one, effectively adding a new transformation to the right of the current one.

For example, let’s say that our current model-view matrix is called M. If we call `glRotate()`, the new value for M will be $M \cdot R$.
glPushMatrix(), glPopMatrix()

- GL uses a very useful concept of a matrix stack.
- At any time, there is a ‘current’ matrix.
- If we call glPushMatrix(), the stack pointer is increased and the current matrix is copied into the top of the stack.
- Any matrix routines (glRotate…) will only affect the matrix at the top of the stack.
- We can then call glPopMatrix() to restore the transform to what it was before calling glPushMatrix().
GL supplies a few functions for specifying the viewing transformation:

- `glFrustum()` lets you define the perspective view volume based on actual coordinates of the frustum.
- `glPerspective()` gives a more intuitive way to set the perspective transformation by specifying the FOV, aspect, near clip and far clip distances.
- `glOrtho()` allows one to specify an orthographic viewing transformation.
glLookAt()

- `glLookAt()` implements the ‘look at’ function we covered in the previous lecture.
- It allows one to specify the camera’s eye point as well as a target point to look at.
- It also allows one to define the ‘up’ vector, which we previously just assumed would be \([0 \ 1 \ 0]\) (the y-axis).
GL Matrix Example

// Clear screen
glClear(GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT);

// Set up projection
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fov, aspect, nearclip, farclip);

// Set up camera view
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye.x, eye.y, eye.z, target.x, target.y, target.z, 0, 1, 0);

// Draw all objects
for (each object) {
 glPushMatrix();
 glTranslatef(pos[i].x, pos[i].y, pos[i].z);
 glRotatef(axis[i].x, axis[i].y, axis[i].z, angle[i]);
 Model[i]->Draw();
 glPopMatrix();
}

// Finish
glFlush();
glSwapBuffers();
Instances

- It is common in computer graphics to render several copies of some simpler shape to build up a more complex shape of entire scene.
- For example, we might render 100 copies of the same chair placed in different positions, with different matrices.
- We refer to this as object *instancing*, and a single chair in the above example would be referred to as an *instance* of the chair model.
class Instance {
 Model *Mod;
 arVector3 Position;
 arVector3 Axis;
 float Angle;
public:
 Instance() {Mod=0; Axis.Set(0,1,0); Angle=0;}
 void SetModel(Model *m) {Mod=m;}
 void Draw();
};

void Instance::Draw() {
 if(Mod==0) return;
 glPushMatrix();
 glTranslatef(Position.x,Position.y,Position.z);
 glRotatef(Axis.x,Axis.y,Axis.z,Angle);
 Mod->Draw();
 glPopMatrix();
}
class Camera {
 Vector3 Eye;
 Vector3 Target;
 float FOV, Aspect, NearClip, FarClip;
public:
 Camera();
 void DrawBegin();
 void DrawEnd();
};