Vectors & Matrices

CSE167: Computer Graphics
Instructor: Steve Rotenberg
UCSD, Fall 2005
Project 1

- Make a program that renders a simple 3D object (like a cube). It should render several copies of the same object with different positions/rotations.
- The goal of project 1 is to get familiar with the C++ compiler and OpenGL (or Java, Direct3D…)
- Due Thursday, October 6, 11:00 am
Project 1: Object Oriented Approach

- I suggest an object oriented approach that will allow you to add new features easily as the course goes on.
- Create a simple ‘Model’ class that stores an array of triangles.
- Make one or more ‘CreateX()’ member functions that create various basic shapes (CreateCube() for example).
- Give it a ‘Draw()’ function that outputs the data to GL.
Project 1

class Vertex {
 Vector3 Position;
 Vector3 Color;
 public:
 void Draw();
};

class Triangle {
 Vertex Vert[3];
 public:
 void Draw();
};

class Model {
 int NumTris;
 Triangle *Tri;
 void Init(int num) {delete Tri; Tri=new Triangle[num]; NumTris=num;}
 public:
 Model() {NumTris=0; Tri=0;}
 ~Model() {delete Tri;}
 void CreateBox(float x, float y, float z);
 void CreateTeapot();
 void Draw();
};
Software Architecture

- Object oriented
- Make objects for things that should be objects
- Avoid global data & functions
- Encapsulate information
- Provide useful interfaces
- Put different objects in different files
Vectors
Coordinate Systems

- Right handed coordinate system
Vector Arithmetic

\[\mathbf{a} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix} \]
\[\mathbf{b} = \begin{bmatrix} b_x & b_y & b_z \end{bmatrix} \]
\[\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_x + b_x & a_y + b_y & a_z + b_z \end{bmatrix} \]
\[\mathbf{a} - \mathbf{b} = \begin{bmatrix} a_x - b_x & a_y - b_y & a_z - b_z \end{bmatrix} \]
\[-\mathbf{a} = \begin{bmatrix} -a_x & -a_y & -a_z \end{bmatrix} \]
\[s\mathbf{a} = \begin{bmatrix} sa_x & sa_y & sa_z \end{bmatrix} \]
Vector Magnitude

- The magnitude (length) of a vector is:

\[|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} \]

- A vector with length=1.0 is called a *unit vector*.
- We can also *normalize* a vector to make it a unit vector:

\[\frac{\mathbf{v}}{|\mathbf{v}|} \]
Dot Product

\[\mathbf{a} \cdot \mathbf{b} = \sum a_i b_i \]

\[\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z \]

\[\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \]
Dot Product

\[\mathbf{a} \cdot \mathbf{b} = \sum a_i b_i \]

\[\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z \]

\[\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \]

\[\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} \]

\[\mathbf{a} \cdot \mathbf{b} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \]
Example: Angle Between Vectors

How do you find the angle θ between vectors \mathbf{a} and \mathbf{b}?
Example: Angle Between Vectors

\[\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \]

\[\cos \theta = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right) \]

\[\theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right) \]
Dot Products with General Vectors

- The dot product is a scalar value that tells us something about the relationship between two vectors.

 - If $a \cdot b > 0$ then $\theta < 90^\circ$
 - If $a \cdot b < 0$ then $\theta > 90^\circ$
 - If $a \cdot b = 0$ then $\theta = 90^\circ$ (or one or more of the vectors is degenerate $(0,0,0)$)
Dot Products with One Unit Vector

- If $|\mathbf{u}|=1.0$ then $\mathbf{a} \cdot \mathbf{u}$ is the length of the *projection* of \mathbf{a} onto \mathbf{u}.
Example: Distance to Plane

A plane is described by a point p on the plane and a unit normal n. Find the distance from point x to the plane.
Example: Distance to Plane

- The distance is the length of the projection of $\mathbf{x} - \mathbf{p}$ onto \mathbf{n}:

$$
\text{dist} = (\mathbf{x} - \mathbf{p}) \cdot \mathbf{n}
$$
Dot Products with Unit Vectors

\[0 < a \cdot b < 1 \]

\[a \cdot b = 0 \]

\[-1 < a \cdot b < 0 \]

\[a \cdot b = -1 \]

\[a = b = 1.0 \]

\[a \cdot b = \cos(\theta) \]
Cross Product

$$a \times b = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$a \times b = \begin{bmatrix} a_y b_z - a_z b_y & a_z b_x - a_x b_z & a_x b_y - a_y b_x \end{bmatrix}$$
Properties of the Cross Product

\(\mathbf{a} \times \mathbf{b} \) is a vector perpendicular to both \(\mathbf{a} \) and \(\mathbf{b} \), in the direction defined by the right hand rule

\[
|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta
\]

\[
|\mathbf{a} \times \mathbf{b}| = \text{area of parallelogram } \mathbf{ab}
\]

\[
|\mathbf{a} \times \mathbf{b}| = 0 \text{ if } \mathbf{a} \text{ and } \mathbf{b} \text{ are parallel}
\]
Example: Normal of a Triangle

Find the unit length normal of the triangle defined by 3D points \(a, b, \) and \(c \)
Example: Normal of a Triangle

\[n^* = (b - a) \times (c - a) \]

\[n = \frac{n^*}{\|n^*\|} \]
Example: Area of a Triangle

Find the area of the triangle defined by 3D points \(a\), \(b\), and \(c\)
Example: Area of a Triangle

\[\text{area} = \frac{1}{2} \left| (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) \right| \]
Example: Alignment to Target

An object is at position p with a unit length heading of h. We want to rotate it so that the heading is facing some target t. Find a unit axis a and an angle θ to rotate around.
Example: Alignment to Target

\[
a = \frac{h \times (t - p)}{|h \times (t - p)|}
\]

\[
\theta = \cos^{-1}\left(\frac{h \cdot (t - p)}{||t - p||}\right)
\]
class Vector3 {
public:
 Vector3() {
 x=0.0f; y=0.0f; z=0.0f;
 }
 Vector3(float x0, float y0, float z0) {
 x=x0; y=y0; z=z0;
 }
 void Set(float x0, float y0, float z0) {
 x=x0; y=y0; z=z0;
 }
 void Add(Vector3 &a) {
 x+=a.x; y+=a.y; z+=a.z;
 }
 void Add(Vector3 &a, Vector3 &b) {
 x=a.x+b.x; y=a.y+b.y; z=a.z+b.z;
 }
 void Subtract(Vector3 &a) {
 x-=a.x; y-=a.y; z-=a.z;
 }
 void Subtract(Vector3 &a, Vector3 &b) {
 x=a.x-b.x; y=a.y-b.y; z=a.z-b.z;
 }
 void Negate() {
 x=-x; y=-y; z=-z;
 }
 void Negate(Vector3 &a) {
 x=-a.x; y=-a.y; z=-a.z;
 }
 void Scale(float s) {
 x*=s; y*=s; z*=s;
 }
 void Scale(float s, Vector3 &a) {
 x=s*a.x; y=s*a.y; z=s*a.z;
 }
 float Dot(Vector3 &a) {
 return x*a.x+y*a.y+z*a.z;
 }
 void Cross(Vector3 &a, Vector3 &b) {
 x=a.y*b.z-a.z*b.y; y=a.z*b.x-a.x*b.z; z=a.x*b.y-a.y*b.x;
 }
 float Magnitude() {
 return sqrtf(x*x+y*y+z*z);
 }
 void Normalize() {
 Scale(1.0f/Magnitude());
 }
};

float x,y,z;
Matrices & Transformations
3D Models

- Let’s say we have a 3D model that has an array of position vectors describing its shape.
- We will group all of the position vectors used to store the data in the model into a single array: \mathbf{v}_n where $0 \leq n \leq \text{NumVerts}-1$.
- Each vector \mathbf{v}_n has components $v_{nx} \ v_{ny} \ v_{nz}$.
Let’s say that we want to move our 3D model from it’s current location to somewhere else...

In technical jargon, we call this a translation.

We want to compute a new array of positions v'_n representing the new location.

Let’s say that vector d represents the relative offset that we want to move our object by.

We can simply use: $v'_n = v_n + d$

to get the new array of positions.
Transformations

$v'_n = v_n + d$

- This translation represents a very simple example of an object *transformation*
- The result is that the entire object gets moved or *translated* by d
- From now on, we will drop the n subscript, and just write $v' = v + d$

remembering that in practice, this is actually a loop over several *different* v_n vectors applying the *same* vector d every time
Transformations

\[\mathbf{v}' = \mathbf{v} + \mathbf{d} \]

- Always remember that this compact equation can be expanded out into

\[
\begin{bmatrix}
 v'_x \\
 v'_y \\
 v'_z
\end{bmatrix} =
\begin{bmatrix}
 v_x \\
 v_y \\
 v_z
\end{bmatrix} +
\begin{bmatrix}
 d_x \\
 d_y \\
 d_z
\end{bmatrix}
\]

- Or into a system of linear equations:

\[
\begin{align*}
 v'_x &= v_x + d_x \\
 v'_y &= v_y + d_y \\
 v'_z &= v_z + d_z
\end{align*}
\]
Now, let’s rotate the object in the xy plane by an angle θ, as if we were spinning it around the z axis.

\[
\begin{align*}
 v'_x &= \cos(\theta)v_x - \sin(\theta)v_y \\
 v'_y &= \sin(\theta)v_x + \cos(\theta)v_y \\
 v'_z &= v_z
\end{align*}
\]

Note: a *positive* rotation will rotate the object *counterclockwise* when the rotation axis (z) is pointing *towards* the observer.
Rotation

\[v'_x = \cos(\theta)v_x - \sin(\theta)v_y \]
\[v'_y = \sin(\theta)v_x + \cos(\theta)v_y \]
\[v'_z = v_z \]

- We can expand this to:
 \[v'_x = \cos(\theta)v_x - \sin(\theta)v_y + 0v_z \]
 \[v'_y = \sin(\theta)v_x + \cos(\theta)v_y + 0v_z \]
 \[v'_z = 0v_x + 0v_y + 1v_z \]

- And rewrite it as a matrix equation:
 \[
 \begin{bmatrix}
 v'_x \\
 v'_y \\
 v'_z
 \end{bmatrix} =
 \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 v_x \\
 v_y \\
 v_z
 \end{bmatrix}
 \]

- Or just:
 \[v' = M \cdot v \]
Rotation

We can represent a z-axis rotation transformation in matrix form as:

\[
\begin{bmatrix}
\nu'_x \\
\nu'_y \\
\nu'_z
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
\nu_x \\
\nu_y \\
\nu_z
\end{bmatrix}
\]

or more compactly as:

\[\mathbf{\nu}' = \mathbf{M} \cdot \mathbf{\nu}\]

where

\[\mathbf{M} = \mathbf{R}_z(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}\]
Rotation

- We can also define rotation matrices for the x, y, and z axes:

\[
\mathbf{R}_x(\theta) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{bmatrix}
\]

\[
\mathbf{R}_y(\theta) = \begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]

\[
\mathbf{R}_z(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Linear Transformations

Like translation, rotation is an example of a linear transformation.

True, the rotation contains sin()’s and cos()’s, but those ultimately just end up as constants in the actual linear equation.

We can generalize our matrix in the previous example to be:

\[\mathbf{v}' = \mathbf{M} \cdot \mathbf{v} \]

\[\mathbf{M} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \]
Linear Equation

- A general linear equation of 1 variable is:
 \[f(v) = av + d \]
 where \(a\) and \(d\) are constants

- A general linear equation of 3 variables is:
 \[f(v_x, v_y, v_z) = f(v) = av_x + bv_y + cv_z + d \]

- Note: there are no *nonlinear* terms like \(v_x v_y\), \(v_x^2\), \(\sin(v_x)\)…
System of Linear Equations

Now let’s look at 3 linear equations of 3 variables v_x, v_y, and v_z

$$v'_x = a_1 v_x + b_1 v_y + c_1 v_z + d_1$$
$$v'_y = a_2 v_x + b_2 v_y + c_2 v_z + d_2$$
$$v'_z = a_3 v_x + b_3 v_y + c_3 v_z + d_3$$

Note that all of the a_n, b_n, c_n, and d_n are constants (12 in total)
Matrix Notation

\[\begin{align*}
 \dot{v}_x &= a_1 v_x + b_1 v_y + c_1 v_z + d_1 \\
 \dot{v}_y &= a_2 v_x + b_2 v_y + c_2 v_z + d_2 \\
 \dot{v}_z &= a_3 v_x + b_3 v_y + c_3 v_z + d_3
\end{align*} \]

\[
\begin{bmatrix}
 \dot{v}_x \\
 \dot{v}_y \\
 \dot{v}_z
\end{bmatrix} =
\begin{bmatrix}
 a_1 & b_1 & c_1 \\
 a_2 & b_2 & c_2 \\
 a_3 & b_3 & c_3
\end{bmatrix}
\cdot
\begin{bmatrix}
 v_x \\
 v_y \\
 v_z
\end{bmatrix}
+
\begin{bmatrix}
 d_1 \\
 d_2 \\
 d_3
\end{bmatrix}
\]

\[\mathbf{v}' = \mathbf{M} \cdot \mathbf{v} + \mathbf{d} \]
Translation

Let’s look at our translation transformation again:

\[\mathbf{v}' = \mathbf{v} + \mathbf{d} \]

\[\begin{align*}
 v'_x &= v_x + d_x \\
 v'_y &= v_y + d_y \\
 v'_z &= v_z + d_z
\end{align*} \]

If we really wanted to, we could rewrite our three translation equations as:

\[\begin{align*}
 v'_x &= 1v_x + 0v_y + 0v_z + d_x \\
 v'_y &= 0v_x + 1v_y + 0v_z + d_y \\
 v'_z &= 0v_x + 0v_y + 1v_z + d_z
\end{align*} \]
Identity

- We can see that this is equal to a transformation by the identity matrix

\[
\begin{align*}
\nu'_x &= 1\nu_x + 0\nu_y + 0\nu_z + d_1 \\
\nu'_y &= 0\nu_x + 1\nu_y + 0\nu_z + d_2 \\
\nu'_z &= 0\nu_x + 0\nu_y + 1\nu_z + d_3
\end{align*}
\]

\[
\begin{bmatrix}
\nu'_x \\
\nu'_y \\
\nu'_z
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\nu_x \\
\nu_y \\
\nu_z
\end{bmatrix}
+ \begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}
\]
Identity

- Multiplication by the *identity matrix* does not affect the vector \(\mathbf{v} \).

\[
\mathbf{I} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\mathbf{v} = \mathbf{I} \cdot \mathbf{v}
\]
We can apply a uniform scale to our object with the following transformation:

$$
\begin{bmatrix}
 v'_x \\
 v'_y \\
 v'_z
\end{bmatrix} =
\begin{bmatrix}
 s & 0 & 0 \\
 0 & s & 0 \\
 0 & 0 & s
\end{bmatrix}
\begin{bmatrix}
 v_x \\
 v_y \\
 v_z
\end{bmatrix}
$$

- If $s>1$, then the object will grow by a factor of s in each dimension.
- If $0<s<1$, the object will shrink.
- If $s<0$, the object will be reflected across all three dimensions, leading to an object that is ‘inside out’.
We can also do a more general nonuniform scale, where each dimension has its own scale factor

\[
\begin{bmatrix}
\nu'_x \\
\nu'_y \\
\nu'_z
\end{bmatrix} =
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & s_z
\end{bmatrix}
\cdot
\begin{bmatrix}
\nu_x \\
\nu_y \\
\nu_z
\end{bmatrix}
\]

which leads to the equations:

\[
\begin{align*}
\nu'_x &= s_x \nu_x \\
\nu'_y &= s_y \nu_y \\
\nu'_z &= s_z \nu_z
\end{align*}
\]
Multiple Transformations

- If we have a vector \(\mathbf{v} \), and an x-axis rotation matrix \(\mathbf{R}_x \), we can generate a rotated vector \(\mathbf{v}' \):

\[
\mathbf{v}' = \mathbf{R}_x(\theta) \cdot \mathbf{v}
\]

- If we wanted to then rotate that vector around the y-axis, we could simply:

\[
\mathbf{v}'' = \mathbf{R}_y(\phi) \cdot \mathbf{v}'
\]

\[
\mathbf{v}'' = \mathbf{R}_y(\phi) \cdot (\mathbf{R}_x(\theta) \cdot \mathbf{v})
\]
Multiple Transformations

- We can extend this to the concept of applying any sequence of transformations:

\[\mathbf{v}' = \mathbf{M}_4 \cdot (\mathbf{M}_3 \cdot (\mathbf{M}_2 \cdot (\mathbf{M}_1 \cdot \mathbf{v}))) \]

- Because matrix algebra obeys the associative law, we can regroup this as:

\[\mathbf{v}' = (\mathbf{M}_4 \cdot \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1) \cdot \mathbf{v} \]

- This allows us to concatenate them into a single matrix:

\[\mathbf{M}_{total} = \mathbf{M}_4 \cdot \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1 \]

\[\mathbf{v}' = \mathbf{M}_{total} \cdot \mathbf{v} \]

- Note: matrices do NOT obey the commutative law, so the order of multiplications is important
3D Linear Transformations

\[v'_x = a_1 v_x + b_1 v_y + c_1 v_z + d_1 \]
\[v'_y = a_2 v_x + b_2 v_y + c_2 v_z + d_2 \]
\[v'_z = a_3 v_x + b_3 v_y + c_3 v_z + d_3 \]

\[
\begin{bmatrix}
 v'_x \\
 v'_y \\
 v'_z \\
\end{bmatrix} =
\begin{bmatrix}
 a_1 & b_1 & c_1 \\
 a_2 & b_2 & c_2 \\
 a_3 & b_3 & c_3 \\
\end{bmatrix}
\begin{bmatrix}
 v_x \\
 v_y \\
 v_z \\
\end{bmatrix} +
\begin{bmatrix}
 d_1 \\
 d_2 \\
 d_3 \\
\end{bmatrix}
\]

\[v' = M \cdot v + d \]