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Robust Adaptive Photon Tracing Using Photon Path Visibility
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We present a new adaptive photon tracing algorithm which can handle illu-
mination settings that are considered difficult for photon tracing approaches
such as outdoor scenes, close-ups of a small part of an illuminated region,
and illumination coming through a small gap. The key contribution in our
algorithm is the use of visibility of photon path as the importance function
which ensures that our sampling algorithm focuses on paths that are visible
from the given viewpoint. Our sampling algorithm builds on two recent de-
velopments in Markov chain Monte Carlo methods: adaptive Markov chain
sampling and replica exchange. Using these techniques, each photon path
is adaptively mutated and it explores the sampling space efficiently without
being stuck at a local peak of the importance function. We have implemented
this sampling approach in the progressive photon mapping algorithm which
provides visibility information in a natural way when a photon path con-
tributes to a measurement point. We demonstrate that the final algorithm
is strikingly simple, yet effective at sampling photons under lighting con-
ditions that would be difficult for existing Monte Carlo ray tracing-based
methods.
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1. INTRODUCTION

Developing efficient and robust global illumination algorithms has
been an active area of research in computer graphics over the last
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25 years. Current state-of-the-art algorithms are based on Monte
Carlo ray tracing. These algorithms solve the rendering equation
[Kajiya 1986] and handle complex geometries, materials, and light-
ing conditions. However, there are scene configurations where many
of the Monte Carlo ray tracing algorithms become highly inefficient.
An example would be the interior of a room illuminated by sunlight
through the window. If the exterior scene geometry is relatively
large, efficiently generating light paths through the window that
contribute to the rendered image becomes challenging. Another ex-
ample would be detailed caustics patterns from a headlight of a
car or strong indirect illumination coming from an adjacent room
through a small gap.

To address difficult lighting scenarios, a number of improved
sampling algorithms have been developed. The most successful
ones are based on Markov chain Monte Carlo methods which were
introduced by Veach and Guibas [1997] in computer graphics, who
developed the Metropolis light transport method. Metropolis light
transport improves the efficiency of light path sampling by gen-
erating a new light path by a small perturbation of the previous
light path. Unfortunately, unbiased Monte Carlo ray tracing meth-
ods, including Metropolis light transport, become highly inefficient
for specular-diffuse-specular light paths from small light sources
[Veach 1998; Hachisuka et al. 2008]. This is inconvenient as most
natural scenes with light bulbs or sunlight exhibit such light paths.
An example includes rendering of a glass illuminated by sunlight
with a diffuse surface below the glass.

Recently, Hachisuka et al. [2008] presented progressive photon
mapping as a robust alternative to unbiased Monte Carlo ray tracing
methods. Progressive photon mapping can handle specular-diffuse-
specular light transport robustly, however, it becomes inefficient in
scenes where only a small part of the lit surfaces can bee seen in
the rendered image. In general, this type of scene is problematic
for any photon-tracing-based methods including progressive pho-
ton mapping and the original photon mapping algorithm [Jensen
1996]. To address this issue, Fan et al. [2005] proposed a Markov
chain sampling method to improve photon tracing in such scenar-
ios. Unfortunately, their method uses path tracing from the eye to
seed the sampling process, and it is still inefficient for specular-
diffuse-specular light transport similarly to unbiased Monte Carlo
ray tracing methods.

In this article, we propose a simple, automatic, and robust photon
tracing algorithm that extends the types of scenes that can be ren-
dered efficiently with photon tracing-based methods. The key idea
is a new importance sampling function solely based on the visibil-
ity information of each photon path. In order to generate samples
from this importance function, we apply two recent developments
in Markov chain Monte Carlo methods: adaptive Markov chain
sampling and replica exchange. Adaptive Markov chain sampling
adjusts the parameters of the mutation strategies adaptively and re-
moves the need for a user to tweak sampling parameters. Applying
replica exchange to progressive photon mapping provides an au-
tomatic mixture of uniform random samples and Markov chains,
and ensures that photon paths do not get stuck at local peaks of
the importance function. Our method is effective in many cases and
strikingly simple to implement. Figure 1 highlights the results of
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Fig. 1. Cognac glass illuminated by a directional light source. The figure compares rendered images using progressive photon mapping with the same
rendering time (120 min), but with different photon tracing algorithms. The images on the top row are rendered using random sampling of photons, which
become increasingly noisy as we zoom into the caustic. Using our photon tracing method (bottom row), we can focus tracing photon paths into the region that
contributes to the image without any portal, and render the close-ups with less noise in the same rendering time. Note that no other existing global illumination
methods can render illumination under the cognac glass accurately, since this illumination comes from specular-diffuse-specular paths from a light source with
zero solid angle. The combination of progressive photon mapping and our photon tracing technique is the first method that works effectively and robustly in
this kind of scene. The stripe patterns in the caustic are not artifacts of our method; they are caused by the tessellation of the cognac glass.

our algorithm on a close-up of a caustic pattern created by a cognac
glass. In summary, our contributions are the following.

—Use of visibility as an importance function in path space, which
significantly simplifies the implementation.

—Introduction of adaptive Markov chain Monte Carlo methods to
rendering, which makes the algorithm parameter-free.

—Application of replica exchange Monte Carlo method, which
provides an automatic mixture of uniform random samples and
Markov chains.

2. RELATED WORK

Many rendering algorithms use photon tracing in various forms
for solving the light transport problem [Arvo 1986; Dutré et al.
1993; Jensen 1996; Lafortune and Willems 1993; Veach and Guibas
1995]. Most recently, Hachisuka et al. [2008] proposed progres-
sive photon mapping which solves the light transport problem
by using progressive accumulation of photons. Our method uses
progressive photon mapping as its rendering algorithm since it
can robustly render scenes that are difficult to render with other
methods (e.g., reflections of caustics from a directional light
source).

Photon tracing methods can, however, become inefficient when
only a small part of the illuminated scene is visible. Veach and
Guibas [1997] addressed a related problem by introducing the
Metropolis light transport method as an application of Markov chain
Monte Carlo methods to rendering. Their assumption is that, given
a sampled light path that we already know contributes to the im-
age, similar light paths will be likely to contribute to the image as
well. Under this assumption, Metropolis light transport generates
a new path by slightly perturbing the previous path. They demon-
strated that this strategy works well in difficult settings including

illumination coming through a small gap. Markov chain Monte
Carlo methods have been successfully used in other forms as well
such as multiple-try Markov chain Monte Carlo methods [Segovia
et al. 2007] and energy redistribution path tracing [Cline et al.
2005].

Most related to our work is the method by Fan et al. [2005],
who applied Metropolis light transport to photon tracing. In order
to obtain the full information of a photon path including whether it
contributes to the image, they proposed to directly sample a com-
plete path from the path space that connects a light source and
the eye. Common to existing MCMC rendering methods and their
work, however, is that they all use sampling on the exact path space.
This unfortunately becomes inefficient in the presence of some
light paths, such as specular-diffuse-specular paths from small light
sources. This is because such paths will have nearly zero volume (or
zero in the case of point light sources or directional light sources)
in the path space [Veach 1998]. These paths are rather common in
the real world such as illumination coming from the filament in a
light bulb. Our method avoids this issue by sampling a blurred path
space using progressive photon mapping, where blurring vanishes
as we add more samples.

Our algorithm uses two advancements in Monte Carlo sampling
algorithms: adaptive Markov chain Monte Carlo methods [Haario
et al. 2001] and replica exchange [Swendsen and Wang 1986]. It
has been known that the mutation parameters, thereby mutation ker-
nels affect the performance of Markov chain Monte Carlo methods
significantly, which are usually tuned by users. Adaptive Markov
chain Monte Carlo methods automate this process by using infor-
mation obtained from past samples and self-learning the importance
function. In this article, we introduce adaptive Markov chain Monte
Carlo methods to rendering. As far as we know, our method is the
first application of adaptive Markov chain Monte Carlo methods in
rendering.
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Light PathsV(u) in the hypercube

Fig. 2. Sampling space of our method. We define a function V (x) in the
hypercube of random numbers. The function returns 1 if a corresponding
photon path contributes to the image (the green point in the shaded region)
and 0 otherwise (the red point outside the shaded region).

The replica exchange method uses multiple target distributions,
or an extended space of the target distribution with auxiliary
parameters, in order to introduce interdistribution mutations. This
alleviates the problem of a Markov chain being trapped within
a single mode in a multimodal distribution by taking a “detour”
of the Markov chain through different distributions. Kitaoka et
al. [2009] applied this algorithm to modify the original Metropo-
lis light transport method by defining multiple target distributions
based on a heuristic separation of light paths (e.g., direct illumina-
tion, indirect illumination, caustics etc.). We provide a formulation
of replica exchange Monte Carlo method in the context of our vis-
ibility function. The key difference is that our formulation results
in a strikingly simple algorithm that is independent from scene
settings.

3. METHOD

3.1 Overview

The overall idea of our algorithm is to define a visibility function of
photon paths and to perform importance sampling on this visibility
function. We define the space of this function as a hypercube similar
to the one that was proposed by Kelemen et al. [2002]. Note that
a point in this space corresponds to a set of random numbers. We
then employ local importance sampling for choosing light sources
and sampling BRDFs and Russian roulette, in order to generate
a photon path from given random numbers. In order to efficiently
sample this function, we propose a combination of adaptive Markov
chain sampling and replica exchange as we will describe in the next
sections.

3.2 Sampling Space and Visibility Function

We first define our sampling space and the importance function.
Given a photon path, �u, in the hypercube, we define a photon path
visibility function, V (�u), where V (�u) = 1 if any photon due to this
photon path contributes to the image and V (�u) = 0 otherwise. The
importance function is simply the normalized version of this visi-
bility function V (�u), which is F (�u) = V (�u)

Vc
where Vc = ∫

V (�u)d�u.
Figure 2 illustrates the definition of our sampling space and visi-
bility function. The use of this function has the additional advan-
tage that there is no local peak in the function, which is prone
to high autocorrelation of samples in Markov chain Monte Carlo
methods (e.g., a chain gets stuck in a very bright path). We can
also easily evaluate V (�u) by checking if a photon path splats any
photon into any of measurement points in the photon splatting
implementation of progressive photon mapping that we describe
next.

3.3 Photon Splatting Implementation

In this variation of progressive photon mapping, we construct an ac-
celeration data structure of measurement points, not a photon map.
In the succeeding photon passes, instead of storing photons as a
photon map, we perform a range query over measurement points at
each photon’s position. In other words, this algorithm is splatting
photons into the measurement points, instead of gathering photons
at each measurement point. We then apply the radius reduction
and the flux correction normally to all of the affected measurement
points. The radiance estimation at each measurement point can be
done as usual. Resampling of measurement points in stochastic
progressive photon mapping is done after tracing a user-specified
number of photons, which controls the frequency of eye ray trac-
ing. We use this splatting implementation throughout the article, in
order to immediately utilize the visibility information of the current
photon path to the next photon tracing.

4. REPLICA EXCHANGE MONTE CARLO

4.1 Overview

The replica exchange Monte Carlo method is an extended ensem-
ble Monte Carlo method where we sample Markov chains from
multiple distributions simultaneously (refer to Iba [2001] for an
overview of this class of algorithms). The basic idea is facilitat-
ing exploration of the sampling space by bridging multiple distant
peaks using another smooth importance function. For example, if
we use a regular Markov chain Monte Carlo method to sample
from an importance function with two peaks separated by zeros, the
Markov chain can get trapped within one peak for many iterations.
The replica exchange Monte Carlo method can avoid this problem
by introducing an extra Markov chain, for instance, from a uniform
distribution. Even if a Markov chain gets stuck in one peak, this
chain can be exchanged with another Markov chain in the uniform
distribution without changing the resulting sample distribution us-
ing replica exchange. Figure 4 illustrates this idea. We first describe
a general formulation of replica exchange Monte Carlo method in
the following and explain our formulation in the next.

Given a set of multiple importance functions, F1(�u), . . . , FQ(�u),
we define a set of independently generated samples from each func-
tion as �U = {�u1, . . . , �uQ}. Under these definitions, �U can be con-
sidered a single sample from the following product function

F̃ ( �U ) =
Q∏

k=1

Fk(�uk), (1)

where �uk is a sample (or a state of the Markov chain) in the impor-
tance function Fk .

The key idea of the replica exchange Monte Carlo method is
to perform an interdistribution exchange such that the preceding
product distribution of samples remains unchanged. This can be
achieved by exchanging states of two chains, �ui and �uj , with the
probability

r
(�ui, �uj

) = min

(
1,

Fi(�uj )Fj (�ui)

Fi(�ui)Fj (�uj )

)
. (2)

As a result, each sequence of Markov chain �uk still distributes
according to Fk(�u), but possibly with a better exploration of the
sampling space due to interdistribution exchanges. This formulation
subsumes the large step mutation used by Kelemen et al. [2002] with
a theoretical formulation using the product distribution.
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Kitaoka et al. [2009] has applied the replica exchange Monte
Carlo method to the light transport problem in the context of im-
proving Metropolis light transport, where they defined target distri-
butions of separated light paths in the heuristic order of difficulty.
This separation is highly scene dependent and its implementation
becomes relatively complex compared to the regular Metropolis
light transport algorithm. Our algorithm is far simpler than their
work in terms of implementation and independent from scene
configurations.

4.2 Our Formulation

Although the replica exchange Monte Carlo method can use mul-
tiple importance functions, we only use two functions: the target
importance function F (�u) as defined by the visibility function and
a constant function I (�u) = 1. Note that even though F (�u) only re-
turns either zero or 1/Vc without any local peak, samples in standard
Markov chain Monte Carlo methods can still be trapped within one
region in the hypercube for a large number of iterations (e.g., only
sampling light from one window out of two windows in a room).

We therefore consider two Markov chains �uF and �uI from F (�u)
and I (�u). Using Eq. (2), we exchange those two chains across the
distributions with probability r (�uI , �uF ).

r (�uI , �uF ) = F (�uI )I (�uF )

F (�uF )I (�uI )
(3)

For general importance functions, this equation needs computation
of multiple probability density at arbitrary sample locations as in
Eq. (2). However, we can simplify the equation in our method
since we know that the sample �uF always returns F (�uF ) = 1

Vc
by

definition and I (�uI ) = I (�uF ) = 1.

r (�uI , �uF ) = F (�uI )1
1
Vc

1
= V (�uI ) (4)

The end result is straightforward. Since the sample �uI is from
uniform sampling, there is no need to keep track of a Markov chain
of �uI ; if uniform independent sampling generates a useful path
(when r (�uI , �uF ) = V (�uI ) = 1) we replace the current photon path,
otherwise, we keep the current photon path and mutate normally
(when r (�uI , �uF ) = V (�uI ) = 0). This formulation results in an
automatic mixture of uniform sampling and Markov chain sampling
based on how frequently we obtain V (�uI ) = 1.

4.3 Progressive Estimation of the
Normalization Term

Using the uniform distribution in the formulation of replica ex-
change Monte Carlo method gives us another benefit. By counting
the samples from the uniform distribution, we can compute the
normalization term Vc in a progressive fashion which is usually
computed in a separate pass in existing Markov chain Monte Carlo
rendering methods. We can estimate the normalization term as

Vc =
∫

V (�u)d�u ≈ NI,V (�u)=1

NI,total
, (5)

where NI,V (�u)=1 is the number of visible paths from uniform dis-
tribution, and NI,total is the total number of generated paths from a
uniform distribution. Note that NI,total is in fact equal to the total
number of generated photon paths from F (�u) because we always
generate a sample from the uniform distribution (Figure 3). Since
this value is already kept for the purpose of radiance computa-
tion, the preceding computation of Vc requires keeping only one

MutationSize ← 1,Accepted ← 1,Mutated ← 0,UniformCount ← 1
repeat
CurrentPath ← UNIFORM()

until ISVISIBLE(CurrentPath)
for i ← 1 to NumTotalPhotons

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UniformPath ← UNIFORM()
if ISVISIBLE(UniformPath)

then

{
CurrentPath ← UniformPath
UniformCount ← UniformCount+1

else

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CandidatePath ← MUTATE(CurrentPath,MutationSize)
Mutated ← Mutated+1
if ISVISIBLE(CandidatePath)

then

{
CurrentPath ← CandidatePath
Accepted ← Accepted+1

R ← Accepted/Mutated
MutationSize ← MutationSize+(R−0.234)/Mutated

SPLAT(CurrentPath)
DISPLAY(UniformCount/i)

Fig. 3. Our photon tracing algorithm. UNIFORM() samples a hypercube us-
ing uniform random numbers, and MUTATE() returns a mutated path with
a given mutation strategy parameter (MutationSize). SPLAT() finds nearby
measurement points of each photon and accumulates photon statistics.
ISVISIBLE() returns true if the given photon path splats any photon into
any of measurement points and false otherwise. DISPLAY() takes its argu-
ment as a scaling factor, and computes pixel values using current photon
statistics.
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Fig. 4. Example of the replica exchange Monte Carlo method with two
distributions. The target distribution (left), F (x), can have multiple dis-
tant peaks that are difficult to sample with regular Markov chain Monte
Carlo methods. The replica exchange Monte Carlo method can improve
exploration of a Markov chain by combining a uniform distribution with
interdistribution exchanges (right).

additional value, NI,V (�u)=1. This normalization constant, Vc, just
uniformly scales the radiance estimate computed for each pixel.

5. ADAPTIVE MARKOV CHAIN MONTE CARLO

5.1 Overview

One notable difficulty in Markov chain Monte Carlo methods is that
the optimal mutation strategy is problem dependent. For example, if
we render an object on a plane with a point light source, depending
on the relative size of the plane and the object, ranges of photon
paths that intersect with the object and/or the plane in the hypercube
change dramatically. In general, no single preset of mutation strate-
gies will work well in all scene settings. We could have as many
mutation strategies as possible to hope that at least one of them is
effective, but this approach wastes computation on other ineffective
mutations. Adaptive Markov chain Monte Carlo methods provide
a way to automatically adjust mutation strategies during the com-
putation by learning the importance function as we sample. Since
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adaptive Markov chain Monte Carlo methods in general cover many
different variations, we only provide an overview of the method that
we use, which is a controlled Markov chain Monte Carlo method
[Andrieu and Robert 2001]. For a more comprehensive overview
of other methods, readers can refer to a survey such as the one by
Andrieu and Thoms [2008].

The idea of a controlled Markov chain Monte Carlo method is
to adjust the parameters of given fixed mutation strategies based
on the previous samples. Given a vector of the initial parameter
values, �θ1, a controlled Markov chain Monte Carlo method updates
the parameters values �θi as

�θi+1 = �θi + H (i, �θi, �ui, . . . , �u1), (6)

where �ui, . . . , �u1 are all samples up to the ith iteration and H is a
function that computes the changes of the parameters according to
this history of samples and the last parameter values �θi . One impor-
tant condition that H needs to satisfy in order to keep the sample
distribution intact is diminishing adaptation principle [Andrieu and
Thoms 2008].

lim
i→∞

H (i, �θi, �ui, . . . , �u1) = 0 (7)

There are many possible approaches to adapt the parameters while
satisfying this condition, but one simple approach that is used in
existing adaptive Markov chain Monte Carlo methods is changing
the parameters such that an acceptance ratio of Markov chains
reaches the desired value. The acceptance ratio (or acceptance rate)
is the fraction of accepted mutations over all the mutations. For
separable functions, the optimal asymptotic acceptance ratio has
been derived 23.4% [Roberts et al. 1997]. We can thus simplyify
Eq. (6) as

�θi+1 = �θi + H (i, A∗, Ai), (8)

where A∗ is the target acceptance ratio and Ai is the acceptance
ratio of samples up to i.

While it is true that our importance function will not be separable
in many scenes, previous work confirmed that using 23.4% works
well in practice with nonseparable functions [Rosenthal et al. 2008].
Furthermore, the general principle that the acceptance ratio should
not be too high or too low is applicable to any functions, so any
target acceptance ratio that is not too close to 0% or 100% will
work as we will demonstrate in the results section. We therefore use
A∗ = 23.4% in all the examples that we show in this article. The
key is that the same target acceptance ratio will work well for many
settings and the user does not need to tweak the target acceptance
ratio scene by scene as we will demonstrate.

5.2 Our Formulation

In this article, we use a simple form of a controlled Markov chain
Monte Carlo method, which adjusts a single mutation parameter in
a power function. A mutation of each coordinate of a given point is
done by adding

�u = sgn(2ξ0 − 1)ξ
1
θi

+1

1 (9)

to each coordinate while keeping the result within (0, 1) by wrapping
around the value in this range. θi is the adaptive mutation size at
the ith Markov chain, sgn(x) is a function that returns the sign
of x, and ξ0 and ξ1 are uniform random numbers within (0, 1).
The mutation size is a global value that is maintained throughout
the sampling process. Note that θi = ∞ corresponds to uniform
random sampling which generates as large mutation as possible,
and θi = 0 corresponds to staying at the same position all the time.

Table I. Statistics of Our Experiments
Scene Triangles Visible Photons Ratio Time Mutation Size
Cognac0 16456 103.1 120 0.274
Cognac1 16456 363.8 120 0.176
Cognac2 16456 885.2 120 0.174
Cognac3 16456 910.4 120 0.168
Cognac4 16456 3284.2 120 0.056
Pocket Watch 152434 270.3 90 0.194
Room 160400 41.9 60 0.253
Cornell w/door 730 55.9 90 0.096
Cornell 36 2.0 90 9.852
Box 3462 3.9 90 3.877
Buddha (far) 378731 6.67 90 0.173
Buddha (near) 378731 54.4 90 0.106

The table shows the number of triangles, the ratio of the number of visible photons
in total between our method/uniform sampling (larger value means more photons are
visible in our method), the rendering time in minutes, and the adaptive mutation size
at the end of the rendering process. Cognac(0-4) correspond to different zoom ratios
(far to near). Buddha (far/near) corresponds to the far/near viewpoint.

The acceptance probability of a mutated path is easily com-
puted since the mutation is symmetric and V (�u) = 1 in our
method. Specifically, given a set of mutations as a vector ��u =
(�u, . . . ,�u), the acceptance probability is

a(�u + ��u ← �u) = F (�u + ��u)

F (�u)
= V (�u + ��u)

V (�u)
= V (�u + ��u),

(10)
which simply means that a mutation is accepted if the mutated
path is visible. In contrast to existing Markov chain Monte Carlo
rendering methods, there is no need for generating another random
number to decide whether we accept a mutation or not.

We compute the acceptance ratio, Ai , by counting the number of
accepted mutations and dividing this value by the total number of
mutations. We then update θi as

θi+1 = θi + γi(Ai − A∗), (11)

where γi = 1/i and θ1 = 1. The intuition behind this equation
is that the acceptance ratio that is too large (Ai − A∗ > 0) would
indicate that the mutation size is too small, thus we increase the
mutation size, and likewise the acceptance ratio that is too small
(Ai − A∗ < 0) indicates that the mutation size is too large, so
we decrease the mutation size. Note that the difference Ai − A∗

can never converge to zero in some scenes, for example, a scene
where all paths are visible (Ai = 100%). However, using γi =
1/i ensures that we always satisfy Eq. (7). Another condition for
the convergence of adaptive Markov chain Monte Carlo sampling,
bounded convergence, requires that the product of the state space
and the space of mutations be finite, which is always satisfied in
practice since floating point numbers have finite state space. The
only parameter, A∗, is “embedded” into the algorithm and users will
not touch it, thus our algorithm is parameter free.

6. ALGORITHM

The pseudocode of the algorithm is shown in Figure 3. The main
modification to the existing implementation of progressive photon
mapping in our case is to change the photon tracing procedure
to use a set of given random numbers instead of generating them
on-the-fly. The rest of the algorithm was implemented without any
large modification to the existing framework since we do not need
to compute probability density of paths in our importance function.
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Fig. 5. Sequences of rendered images of a room (with permission of Youichi Kimura) illuminated by a directional light source. The top row shows the results
with uniform sampling and the bottom row shows the results with our method using the same rendering time (1, 15, 30, and 60 min from left to right). Our photon
tracing method robustly and automatically handles scenes that are considered difficult to render with existing photon tracing approaches. The illumination is
coming through the glass window and only photon tracing approaches can handle such paths without ignoring specular reflections and refractions at the window.

7. RESULTS

We have implemented a uniform random photon tracing algorithm
and our algorithm using the splatting variation of stochastic pro-
gressive photon mapping [Hachisuka and Jensen 2009]. All the
scenes have been rendered on a 2.67 GHz Intel Core i7 920 using
one core. The alpha value is 0.7 as in the original progressive pho-
ton mapping work [Hachisuka et al. 2008]. We trace 200K photons
per eye ray tracing pass. The initial radii are manually chosen for
each scene as a constant value to get approximately four pixel-wide
contribution on the image from each photon at the beginning. This
manual tweaking of the initial radii is orthogonal to our claim that
the proposed photon tracing algorithm is automatic and parameter
free. The resolution of the images is 5122 except for Figure 13
which uses 640 × 480. Table I summarizes various statistics of our
experiments. The calculated acceptance ratio is 23.4% for all scenes
except the ones where our method does not provide improvement
(Cornell and Box).

Figure 1 compares rendered images of a cognac glass illuminated
by a directional light source with different zoom ratios. The caustic
below the glass exhibits a specular-diffuse-specular path. Due to
the fact that this path is generated from a directional light source,
existing unbiased Monte Carlo ray tracing methods cannot render
this scene since the probability that a path started from the eye hits
a directional light source is zero and vice versa. To demonstrate
the effect of our sampling method, we zoom into the caustic such
that the visible illuminated region becomes increasingly small. This
means that many photons land outside the view with uniform photon
sampling. Our method focuses photons into the visible region, and
we can obtain significantly less noisy images in the same rendering
time regardless of the viewpoint. The ratios of visible photons in

Table I also show that our method focuses increasingly more pho-
tons compared to uniform photon sampling.

Figure 5 shows a sequence of rendered images of a room illu-
minated through a glass window by a directional light source. The
graph shows relative root mean square errors of the images. The
images rendered by our method quickly converge to visually pleas-
ing results compared to uniform photon sampling. Our method also
has lower numerical error in the same rendering time as shown in
the graph of Figure 6.

Figure 7 highlights the effect of the adaptive Markov chain Monte
Carlo method. A mutation size that is too large results in an image
with as much noise as the image rendered using uniform sampling,
and mutation size that is too small is noisy as well compared to
the adaptive mutation size. Our photon tracing method based on
adaptive Markov chain Monte Carlo gives us the result shown in
the third image from the left of Figure 7 without any tuning of pa-
rameters. Note that, in a regular Markov chain Monte Carlo method,
we generally cannot know which mutation size works well unless
we actually try a wide range of mutation size (0.01 to 4.0 in our
example) and compare rendered images. Our method automates this
process based on the current scene setting.

We also demonstrate the effect of replica exchange in Figure 11.
We rendered the same scene with and without the replica exchange
procedure. In this example, we fixed the mutation size to isolate
the consequence of using the adaptive mutation. Without replica
exchange, photon paths can be trapped within one of the windows
for many iterations due to isolated regions of V (�u) = 1. The replica
exchange Monte Carlo method alleviates this issue, resulting in
more visually plausible images in the same rendering time.

We show the effect of target acceptance ratio in Figure 8. We
have rendered the same scene as in Figure 12 using different
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Fig. 6. Color coded error images of Figure 5 and the graph that compares the average errors of rendered images with uniform sampling and our method. Our
method not only generates visually smoother images, but also results in more accurate solutions in the same rendering time.

Fig. 7. The effect of adaptive mutation size. A pocket watch is illuminated by a hemispherical light source and a directional light source and is rendered
with depth-of-field. Illumination on the dial-plate is due to caustics from the glass cover and the metal lid. The images shown are rendered by uniform random
sampling (the leftmost image) and our photon tracing method (right three images) in the same rendering time. The second image uses mutation size that is too
small (di = 0.01) and the fourth image uses mutation size that is too large (di = 4.0). The adaptive Markov chain Monte Carlo method used in our method
(the third image) produces the least noisy result without any parameter tuning.

Fig. 8. Close-ups of rendered images using different target acceptance ratios. We have rendered the same scene as in Figure 12 using different target acceptance
ratios (from left to right: 5%, 23.4%, 40%, and 90%) using the same rendering time (90 min). Each calculated acceptance ratio achieved is the same as the given
target acceptance ratio. The target acceptance ratios closer to 0% or 100% result in slightly noisier images (leftmost and rightmost), but using intermediate
values would not affect the efficiency of our algorithm (middle two).

target acceptance ratios (from left to right: 5%, 23.4%, 40%, and
90%). Note that differences in the middle two images (23.4% and
40%) are rather small, which indicates our method is not very
sensitive to the target acceptance ratio. However, the images with
extreme target acceptance ratios (close to 0% or 100%) are nois-
ier than the image with the target acceptance ratio of 23.4%. As

mentioned ealier, similar results have been observed in other appli-
cations in computational statistics [Rosenthal et al. 2008] and we
confirmed that this is also the case in our method through numerical
examples.

Figure 9 shows examples where our method will not provide a
benefit as most of the paths are already visible. For such scenes,
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Fig. 9. Rendered images of scenes where our method does not provide
benefits. Our method (top) still performs as well as uniform random sampling
(bottom) does in the same rendering time (90 min). Note that box scene is
the one that is demonstrated to be rendered robustly only with progressive
photon mapping [Hachisuka et al. 2008].

Fig. 10. Example scene where flux variations due to BRDFs are the main
source of rendering error. The statue (with permission of VC-ISTI) is ren-
dered using a modified-Phong model with the exponent 100 under a hemi-
spherical light source and a directional light source using uniform random
sampling (left column) and our method (right column). The rendering time
is 90 min. Although our method shows improvement in the close-up images
(bottom row), our method performs approximately the same with the distant
viewpoint (top row) as it does not resolve flux variations due to BRDFs.

Fig. 11. Effect of replica exchange. We rendered Sibenik cathedral (with
permission of Marko Dabrovic) with a directional light source as the only
light source in 90 min with (left) and without (right) replica exchange.
Without replica exchange, samples can get stuck within a small region
(i.e., single window) for long time, resulting in a solution with very high
correlation of samples.

sample correlation introduced by a Markov chain Monte Carlo sam-
pler would just result in additional rendering artifacts. The results,
however, show no visible negative effect when we compared our
method to uniform sampling. This is because the exchange by uni-
form random sampling happens often in this type of scene, and our
algorithm automatically uses uniform random sampling for most
of the photons (refer to the pseudocode in Figure 3). At the same
time, the adaptive Markov chain Monte Carlo method automatically
increases the mutation size to decrease sample correlation. The mu-
tation sizes shown in Table I for Cornell and Box therefore are thus
noticeably larger than other scenes.

Table I provides a rough idea of the cases where we will see
benefits using our photon tracing method. The column of “Visible
Photon Ratio” shows how many times more photons become visible
using our method. For the scenes that show no benefit (Cornell and
Box), the ratio is less than 10. As we can see in Figure 5 and Figure 6,
the room scene already shows some benefit with our method, and
the ratio is 41.9, thus the ratio may need to be more than a few tens
to obtain improvement using our method.

Since we use a hypercube of random numbers as the sampling
space, our method can handle local lighting similar to Metropolis
light transport without any modification as shown in Figure 12.
Figure 13 visually verifies that our method preserves robustness of
progressive photon mapping, thus being able to handle scenes that
are difficult for the unbiased methods. None of the images using
the unbiased methods is visually converged, thus the differences in
the shape of caustics developing in the result of Metropolis light
transport and our results are due to error of the solution.

8. DISCUSSION

8.1 Comparisons with Other Importance Functions

In a regular implementation of Metropolis light transport, the impor-
tance function is usually given as the brightness of each path [Veach
and Guibas 1997; Kelemen et al. 2002]. Using this importance func-
tion, each importance sampled path contributes the same brightness
to the image. This importance function achieves sampling accord-
ing to outgoing radiance within each pixel toward the eye. This
choice is motivated by picking a probability density function that is
proportional to the integrand which results in zero variance.

The important fact is that the samples are distributed over the
image. This essentially means that we solve multiple integrations
with different integrands at the same time by distributing each
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Fig. 12. Cornell box with a small gap with a door. The images are rendered
with uniform sampling (left) and our method (right) in 90 min. Our method
works under local lighting without any modifications to the algorithm.

sample according the brightness of the path. As a result, bright
pixels get more samples compared to dark pixels as we mentioned
in Section 3.2, which results in poor stratification of samples over
the image. Energy redistribution path tracing [Cline et al. 2005]
improves stratification of samples by starting multiple independent
chains from stratified screen-space samples on the image. However,
even if those initial points are well distributed, succeeding Markov
chains can get stuck in paths with very large brightness for many
iterations. Cline et al. thus proposed postprocess filtering, which
unfortunately makes the algorithm inconsistent (i.e., does not con-
verge to the correct solution). Although our target function does
not provide stratification on the image, the function does not have
any local peak that is prone to this issue. Isolated visible paths can
still lead to this issue, however, the replica exchange Monte Carlo
method alleviates the problem in such cases since the exchange
results in a completely different path as soon as we find another
visible path by uniform sampling.

Interesting observations on alternative target functions have re-
cently been made by Hoberock and Hart [2010]. They proposed
a multipass algorithm that adjusts the importance function using
information from previous passes, such as brightness and variance
of each pixel. Their work also supports our claim that just using
the brightness of each path is not necessarily the optimal choice.
They additionally pointed that a constant importance function does
not work because no importance sampling will be employed, which
may be confusingly similar to our importance function. The impor-
tant distinctions are that our function is applied to photon tracing
and our function returns 0 for invisible photon paths. Since pho-
tons are naturally distributed according to incoming radiance if
proper local importance sampling and Russian Roulette are done
(i.e., photon density is equal to radiance), our method still employs
importance sampling of incoming radiance, even with our simple
target function.

8.2 Limitations

One limitation of our method is that it ignores flux variations due
to BRDFs (Figure 9). For example, if a scene has a highly glossy
material, just using visibility information will not resolve this flux
variation due to the glossy BRDF lobe. Figure 10 demonstrates such
an example scene, where most of noise is due to a highly glossy
BRDF. Although our method still provides visible improvement
when we render the close-up of the same scene, it does not resolve
noise due to the glossy BRDF. Note that this particular example
scene itself might be efficiently rendered with other methods, such as
path tracing with the next event estimation, but we chose this scene
to highlight the limitation of our method. One possible solution is to

use stochastic progressive photon mapping to perform importance
sampling of a BRDF from the eye, which resolves this flux variation.
However, this solution is not perfect. Ideally, we would like to
sample photon paths according to its contribution to the image,
which cannot be achieved by stochastic progressive photon mapping
in a general setting.

Another limitation is that the adaptive procedure is done globally.
Using locally adaptive mutation parameters might improve conver-
gence speed as was proposed in existing computational statistics
literatures [Andrieu and Thoms 2008]. For example, we might be
able to use an adaptive grid to store mutation parameters locally, and
use and update these parameters according to the current state (i.e.,
position in the hypercube). This, however, could be challenging as
our sampling space is in high-dimensional space, where the cost of
storing any local estimation including adaptive mutation parame-
ters is often prohibitive and reliable estimation is difficult due to the
curse of dimensionality.

As we mentioned earlier, our algorithm does share the limitation
with the other Markov Monte Carlo chain rendering algorithms
that the samples are not stratified over an image. It is interesting to
investigate as future work whether the adaptive importance function
proposed by Hoberock and Hart [2010] is applicable to our method
in order to improve stratification.

8.3 Dynamic Target Distribution

One theoretical difficulty of applying any Markov chain Monte
Carlo method to progressive photon mapping is that the target dis-
tribution, thereby the importance function, changes as the number
of samples increases. This is because progressive photon mapping
updates the radii of the measurement points to ensure convergence
to the correct solution. In our approach, this results in changes of the
region where V (�u) = 1. Although we have not found any apparent
failure cases, the theoretical behavior of Markov chain Monte Carlo
methods on the dynamic target distribution in progressive photon
mapping is not fully analyzed. Our combination with the adaptive
Markov chain Monte Carlo method further complicates this theo-
retical validation. Convergence of the normalization term may also
require careful theoretical analysis. In this article, we thus do not
claim provable convergence to the correct solution using our photon
tracing algorithm.

However, since we always use the current radii to distribute the
photon power, the contribution is at least computed based on the
current distribution. It is only the stationary sample distribution that
is not analyzed. This separation might be helpful for further theoret-
ical analysis. We also believe that, even without a formal theoretical
validation, our method will be useful for many practical applica-
tions that do not require theoretical guarantees of consistency. In the
end, provable convergence is only a theoretically appealing property
as we cannot take infinite number of samples in practice. We see
practical benefits of using our method through numerical experi-
ments as we have demonstrated.

9. CONCLUSION

We have presented a new photon tracing algorithm using a simple
and effective importance function based on the visibility of photon
paths. Our algorithm uses recent developments in Markov chain
Monte Carlo methods. The resulting algorithm does not have any
parameters that require fine tuning by the user, and its implemen-
tation is strikingly simple. We have demonstrated that our algo-
rithm efficiently handles scenes that are difficult for existing photon
tracing approaches, while still keeping the efficiency for simple
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Fig. 13. Equal-time comparisons with other rendering methods (four hours, except for conventional photon mapping for which rendering time is limited
by memory consumption). The images are rendered with, from left to right, top row: path tracing, bidirectional path tracing, Metropolis light transport, and
bottom row: original progressive photon mapping, conventional photon mapping with 20M photons, and progressive photon mapping with our photon tracing
method. Our method does not impair the robustness of original progressive photon mapping. The small differences in the result of our method are due to the
use of different rendering systems.

scenes. The combination of our algorithm and progressive pho-
ton mapping is an effective, unified, and robust solution to many
light transport configurations. Although we used progressive photon
mapping in this article, we expect that the same importance function
can be used for the original photon mapping and other Monte Carlo
ray tracing methods to improve the efficiency of photon tracing.
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